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Abstract. EEG segments recorded during microsleep events were transformed
to the frequency domain and were subsequently clustered without the common
summation of power densities in spectral bands. Any knowledge about the
number of clusters didn’t exist. The hierarchical agglomerative clustering
procedures were terminated with several standard measures of intracluster and
intercluster variances. The results were inconsistent. The winner histogram of
Self-organizing maps showed also no evidence. The analysis of the U-matrix
together with the watershed transform, a method from image processing,
resulted in separable clusters. As in many other procedures the number of
clusters was determined with one threshold parameter. The proposed method is
working fully automatically.

1 Introduction

Eleven subjects (3 females, 8 males), aged 19 to 36 years, participated in an overnight
driving simulator study. Their task was intentionally monotonous, simply to avoid
major lane deviations. Electrooculogram (EOG, oblique) and electroencephalogram
(EEG) were recorded in two unipolar and two bipolar recordings.

Dangerous short attention-loss phases during driving are characterized by a
transition from struggling to remain awake to an involuntary short sleep episode.
These phases, sometimes called microsleeps [1], are associated in many cases with an
increased activity of slow eye movements (SEM) [2, 3]. The EEG during SEM, as in
the whole transition phase from drowsiness to sleep, was found to have much more
complex and variable patterns than the wakeful EEG [2]. Our investigations were
focused on clustering the spectral features of the EEG during the SEM, to show if
there are differences in EEG indicative of different functional states of the brain.

2 Clustering with agglomerative hierarchical methods

The input vectors for the following analysis consisted of 47 spectral components (2 to
25 Hz; 0.5 Hz steps). A principal component analysis (PCA) was routinely computed,



but there was no reason to assume input vectors in a linear subspace, because the last
ten principal components had a residual variance of approximately 8%. A Scree test
and the Kaiser criteria for the covariance matrix (number of eigenvalues greater than
one) indicated 13 principal components, but they explained only 30% of the total
variance.

Therefore, all 47 variables were included in a cluster analysis, performed with the
SAS package [4]. Five different agglomerative procedures were applied (Tab. 1) and
were terminated with six different measures. The measures, except the elbow
measure, are based on estimates of the intracluster and intercluster variances and are
all implemented in SAS. In [5] 24 different measures were applied to data sets with
known numbers of clusters. The measure with the best reliability was ‘Pseudo-F’.

Table 1. Estimated numbers of clusters obtained from five different agglomerative hierarchical
methods with six different measures. Left: for the standardized data set. Right: for the non-
standardized data set.

The estimated numbers of clusters were inconsistent (Tab. 1) depending on the
method used on the termination measure and on the data set. We used two data sets,
one without and one with standardization of the data, recommended by several
authors [6, 7]. A number of clusters greater than 12 was excluded, because it is
difficult for an EEG-expert to interpret such a large number of clusters.

      
Fig. 1a. Dendrogram of the Average Linkage Fig.1b. Dendrogram of the Ward method
method for the non-standardized data set for the non-standardized data set

With the Centroid method, an indication of seven clusters was found in all six
measures using both data sets. Using the Ward method, six clusters were found in 5 of



the 6 measures in the non-standardized data set only. In the standardized data set,
three clusters were found in only three of the measures.

The dendrograms obtained for three linkage methods showed a lot of very small
clusters (Fig. 1a). Dendrograms without such miniclusters were computed for
Centroid and Ward methods (Fig. 1b).

A factor analysis using Varimax rotation prior to clustering led to a reduction to 13
variables. But all subsequently applied agglomerative methods achieved higher
inconsistencies in the number of clusters compared to the analysis of original input
vectors.

The simple model underlying all measures for terminating the agglomerative
process is disadvantageous. Specifically, the linkage methods are not well
characterized with variance measures.

3 Clustering with SOM

The self-organizing feature map (SOM) [8] was applied to the non-standardized data
set for clustering. Using the principle of competitive learning, the weight vectors
can be adapted to the probability density function of the input vectors [9]. The
similarity between the input vector x, and the weight vector w, was calculated by the
Euclidian distance. During training an arbitrary weight vector wj was updated at
iteration index t by:
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Where η(t) is a learning rate factor decreasing during training, and hcj(t) is a
neighborhood function between wc, the weight vector winning the competition, and
the weight vector wj. hcj(t) is also decreasing during training. The neighborhood
relationships are defined by a topological structure and are fixed during training. We
used a two-dimensional tetragonal relationship. In the final phase of training, the fine-
adjustment [9], the neighborhood radius is very small, leading to updates of the
winning weight vectors wc and of their nearest neighbors. For a one-dimensional
topological structure it can be shown [9] that the training rule Eq. (1) leads to an
approximation of a monotonous function of the probability density function of the
input vectors. The two-dimensional topology results in a compromise between a
density approximation and a minimal mean squared error of vector quantization [10].

In the case of existing compact regions of input vectors and of existing density
centers, as for Gaussian mixtures, the evaluation of the relative winner frequency of
the neurons leads to a visualization of clusters. Fig. 2a shows such a gray-level-coded
winner histogram. Five areas with increased winner frequency are evident. The
Gaussian mixture data were generated by fixing five cluster centers and five
covariance matrices, and adding normal distributed noise in a 47-dimensional space,
as in our experimental data set. The size of the generated data set and of the
experimental data set was equal, and their estimated total covariance matrices were
approximately equal. The black colored units in Fig. 2a are dead neurons, which make
it easy to separate clusters. Fig. 2b shows the relative winner frequency for the



experimental data set. A separation of regions with increased winner frequency is not
possible.

    

Fig. 2a. Relative winner frequency for a SOM Fig. 2b. Relative winner frequency for a SOM
with 30x40 neurons for Gaussian mixture data with 30x40 neurons for SEM-EEG data

For a topology-preserving mapping neighbored, weight vectors in input space are
also neighbored in output space (the two-dimensional map) [11]. The mapping from
input to output space is quasi-continuous, but must not be continuous in the reversed
direction. Therefore, two topologically neighbored weight vectors must not represent
one cluster. If their distance is small, then they probably represent one cluster,
otherwise they probably represent different clusters. The visualization of the distances
between neighbored weight vectors was introduced as the unified distance matrix
(U-matrix) [12]. In the following, only two-dimensional tetragonal topologies are
considered. For every weight vector wx,y, where x and y are the topological indices,
the Euclidian distances dx and dy between two neighbors and the distance dxy to the
next but one neighbor is calculated:
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The distance du was calculated as the mean over eight surrounding distances. With
the four distances for each neuron dx, dy, dxy and du, the U-matrix is well defined
and has the size (2nX -1) x (2nY - 1)  (Fig. 3).

In Fig. 4 the U-matrix elements were mapped on a gray scale. Light-gray levels
indicate low values, and dark-gray levels indicate high values.

Visual scoring of five clusters in the U-matrix of Gaussian mixture data (Fig. 4a) is
evident. As expected, the cluster regions on the map are regions of small distances
between the weight vectors, which are separated by small regions of large distances.



The U-matrix of the SEM-EEG data (Fig. 4b) has much more complexity and it is
difficult to define borders.
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Fig. 3. Definition of the U-matrix and localization on the tetragonal topological structure,
shown for the neuron in the center only. Circles: positions of neurons; black squares: positions
of U-matrix elements

 

Fig. 4a. U-matrix for SOM from Fig. 2a Fig. 4b. U-matrix for SOM from Fig. 2b

Costa et al. [13] propose an automatic segmentation of the U-matrix using the
watershed algorithm of gray scale image processing [14]. Regarding high values as
mountains and low values as valleys, the algorithm can be illustrated by flooding the
valleys with water; watersheds will be built up where the water converges (Fig. 5a).
This algorithm leads to closed borders. All weight vectors in one segmented region
represent one cluster, and the fusion of their Voronoi sets leads to all items of a
cluster.

The results of segmentation are dependent on the size of the SOM. With a
relatively large number of weight vectors, many clusters are obtained. Smoothing the
gray level function with a two-dimensional filter reduces the risk of over-
segmentation; here a 3x3-gaussian filter was applied. The size of the SOM was
considerably restricted when the topographic product [15] was taken into account.
The topographic product is a measure for the correspondence of the input and output
space dimensions. We obtained an optimal value for a SOM size of 4 x 6, but in the
case of such small maps the segmentation of the U-matrix failed. Therefore, we
extended the size but retained the ratio of approximately 70%. On the other hand, it
was shown, that the topographic product was a good measure for approximately linear
manifolds only [11].

dx
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Fig. 5a. Cross section of gray scale mountains Fig. 5n. U-matrix from Fig. 4b after
watershed transformation

In several regions of the U-matrix (Fig. 5a, 5b) black-and-white textures are
observable. They describe relatively large differences between dx and dy, and are
connected with local stretchings of the SOM along one topological coordinate. If, on
the other hand, the dx-elements of the U-matrix, for example, are visualized only,
some segment borders disappear. Therefore we restricted our investigations to the
function du(x,y).

  

Fig. 6a. Number of clusters vs. hmin for the Fig. 6b. The same as in Fig. 6a but without
U-matrix of Fig. 5b with generation of new generation of new regions
regions [13].

Flooding the reservoirs has to be started at an initial level hmin [14]. It was not
straightforward to find suitable values for hmin.  Starting with hmin = Umin =
min( du(x,y) ), the global minimum, as well as with to high values for hmin led to one
cluster only. With a given value hmin the number of clusters is fixed and is preserved
during flooding.

The number of clusters versus hmin showed no plateau (Fig. 6a), however,
distinctive plateaus are required to get a reliable number of clusters [13]. Therefore,
we propose a modification allowing the generation of new minima regions during
flooding. All local minima regions of the function du(x,y) with values greater than
hmin are considered as autonomous clusters. To avoid over-segmentation only
significantly extended regions were taken into account. Such regions could
correspond to clusters with lower probability densities.

Minima

Watershed Reservoir



Under this modification an extended plateau was calculated at 9 clusters (Fig. 6b).
The assumption of 10 clusters is misleading because hmin can not be below the global
minimum Umin.

Fig. 7. All 1652 input vectors grouped in 9 different clusters; horizontal: frequency; vertical:
item; gray scale: spectral power density.

4 Results

The 9-cluster solution of the described automatic clustering and segmentation
procedure is shown in Fig. 5b. The segments contain different numbers of weight
vectors. The fusion of their Voronoi sets, mentioned above, leads to the clusters
(Fig. 7). Cluster 1 and 2 contain input vectors with large magnitudes in the alpha1
band (7.5-10.5 Hz), cluster 6 in the alpha2 band (10.5-12.5 Hz), cluster 3 in the theta
band (3.5-7.5 Hz) and cluster 9 in the delta band (1.0-3.5 Hz). In contrast to the usual
summation in frequency bands, greater detail can be seen. The input vectors of cluster
1 and 2, for example, are large in the same spectral band, but they differ in the
magnitude range and differ in other spectral bands.

From Fig. 7 one may get the visual impression of homogeneous clusters, with the
exception of cluster 7 and 8. The described method is working fully automatically and
has a low number of free parameters. Beside the common parameters for the SOM,
there is only one parameter hmin for segmentation. Clustering is possible with a high
reproducibility. Many reruns with 80% of all input vectors, arbitrary selected, lead to
always nine clusters. With the proposed segmentation method, a visualization of the
SOM is not necessary and the limitation to two-dimensional maps can be left behind.
It is possible to extend the whole clustering method to higher dimensional topologies.
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