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Abstract 
 

EEG-signals and EOG-signals of eleven subjects 
were recorded during an overnight driving 
simulation task. By scoring the recorded videos clear 
microsleep events and clear non-microsleep events 
were picked out and small segments of the measured 
EEG- and EOG-signals before and during the events 
were analyzed. The spectral densities of these 
segments were classified using three methods of 
Learning Vector Quantization. Best classification 
results, up to 91%, were obtained with inclusion of 
all used EEG and EOG channels. 
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1. Introduction 
 
Reliable methods to discriminate dozing-off events 
from continuously measured signals of a driver will 
be an important milestone in the development of 
drowsiness warning systems. Dozing-off periods are 
characterized by sudden intrusions of sleep into 
wakefulness, lasting for 2 to 30 sec [1], and often 
called as microsleep events (MSE). As pointed out 
by several authors, it is very difficult to get a 
drowsiness measure; for review see [2]. On the other 
hand, drowsiness measures are often calculated on a 
minute-scale, while signal processing to discriminate 
MSE has to be on a scale of seconds. As stated in 
[2], the only method that measures continuous 
fluctuations of sleepiness should be polysom-
nography, mainly by analyzing the electroencepha-
logram (EEG) and the electrooculogram (EOG). 
Later on, some success was made by pupillography 

[3-5]. By processing the pupil diameter signal, only, 
a discrimination performance of over 80% is 
achievable, as recently reported by us [6].  
In this paper we are regarding the following 
questions: 
 

1) Do small segments of EEG and of EOG 
immediately before and during a MSE contain 
enough information to discriminate them from 
segments during non-microsleep episodes 
(NMSE), when the driver is drowsy but still 
attentive? 

 

2) Is it possible to detect MSE without a noticeable 
decrement by analyzing only one channel of the 
multi-channel EEG- /EOG- recordings? 

 

3) Which segment length and which time offset 
related to the MSE starting time are optimal? 

 
 

2. Exper iment 
 
Our experimental setup is comparable to [7]. Four 
EEG-signals and two EOG-signals were recorded of 
eleven young subjects during driving simulation 
sessions lasting 25 min and repeated every hour 
between 1 a.m. and 7 a.m. Two video cameras were 
utilized to record drivers portrait and right eye region 
for visual off-line scoring of MSE, typically 
recognizable by closed eyes or by drop of the head. 
Scoring was performed by two experienced persons 
under the guideline to take only undoubtable cases 
into account. Disadvantageously, attention losses 
with open eyes and with stare gaze are not detectable 
by this scoring method. The number of MSE was 
very different between subjects and was increasing 
with time of day for all subjects. All in all 1,675 
MSE and 1,286 NMSE were scored. 



�
(N)MSE

Video 1
Video 2

4 x EEG

OF

SL

2 x EOG

�
�

Figure� 1:� Segmentation� of� EEG-� /� EOG-� signals� with�
relation� to� visually� scored� microsleep-� (MSE)� or�
nonmicrosleep-� (NMSE)�events�by� two�parameters�offset�
(OF)�and�segment�length�(SL).�
�
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3.�Analysis�
�
EEG�and�EOG�were�lowpass�filtered�with�40�Hz�cut-
off� frequency� and� sampled� at� 64� Hz.� After�
synchronization� between� both� video� recordings� and�
EEG-� /�EOG-� recordings,�segments�were�stored� for�
further� processing� using� variable� time� offsets� (OF)�
and�variable�segment�length�(SL)�(Fig.�1).���
After� linear� trend� removal� and� applying� Hanning�
window,� spectral� estimation� was� done� by� discrete�
Fourier� transform.� Spectral� power� densities� were�
averaged� by� summing� up� in� frequency� bands� of�
width�of�0.5�Hz,�1�Hz�and�2Hz�and�in�conventional�
bands�of�EEG�research:�delta� (0.5�…�3.9�Hz),� theta�
(4.0�…�7.9�Hz),�alpha�(8.0�...�11.9�Hz),�sigma�(12.0�
…�13.9�Hz)�and�beta�(14.0�…�29.9�Hz).��
�
�

4.�Discrimination�analysis�
�
For� each� feature� vector� consisting� of� averaged�
absolute�spectral�power�densities�of�all�six�signals�a�
label�“MSE”�or�“NMSE”�was�scored,�thus�we�have�a�
two-class�classification�problem.�Analysis�was�done�
by� Learning� Vector� Quantization� (LVQ)� [8].� All�
three�methods�OLVQ�1,�LVQ�2.1�and�LVQ�3�were�
processed� sequentially� preceded� by� an� initialization�
phase�[9].�The�learning�set�was�partitioned�into�80%�
training� set� and� 20%� test� set.� Partitioning� was�
repeated� 50� times� for�each� parameter� setting� of� the�
LVQ�network.�The�classification�rate�was�estimated�
as� the� ratio� between� the� number� of� correct�
classifications� to� the� number� of� all� classifications�
using� the� test� set.� This� kind� of� discrimination�
analysis�is�comparable�to�that�in�[10].�

Elimination� of� dead� neurons� after� training,� slightly�
improves� classification� rates,� therefore� it� is�
recommended.��
�

�
�

Figure� 2:� mean� values� and� standard� deviations� of�
classification�rates�for�different�selected�signals.�Label�“1-
4” � e.g.� means� inclusion� of� signal� 1,� …,� 4� (all� EEG-
signals)�and�label�“3,6” �means�inclusion�of�signal�3�and�6.�
�
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Figure� 3:� mean� values� and� standard� deviations� of�
classification� rates� for� different� offsets� (OF)� and� three�
different� segment� lengths� (SL).�Best� results� are�obtained�
with�SL�=�8�sec�and�OF�=�4�sec.�

�
At� first,� we� come� to� question� 2,� concerning� the�
number� of� signals� necessary� for� optimal�
classification.� The� LVQ� network� was� trained� and�
tested� by� different� selections� of� signals� (Fig.� 2).�
Every� signal� was� selected� alone� for� training� and�
testing.� Signal� 3,� an� EEG� signal,� and� signal� 6,� an�
EOG� signal,� were� much� more� suitably� than� the�
others.� Both� EOG� signals� (5-6)� were� more� suitably�



than� all� EEG� signals� (1-4).� But� most� success� was�
gained�by�inclusion�of�all�six�signals�(1-6).��
Best� classification� results� were� obtained� for�
averaging� the� spectral� power� densities� in� frequency�
bands.� In� general,� a� compromise� has� to� be� found�
between�the�number�of�features,�because�of�curse�of�
dimensionality,�and�the�lack�of�refinement�in�spectral�
domain,� i.e.� extend� of� information� loss.� For� band�
width�of�1Hz�results�were�slightly�better�than�for�0.5�
Hz� and� for� 2� Hz.� Surprisingly,� decrease� of�
classification� rates�were�only� about�3%�when�using�
the�five�frequency�bands�of�EEG�research�mentioned�
above.�
At� second,�we�varied� two�preprocessing�parameters�
(question� 3),� segment� length� (SL)� and� temporal�
offset� (OF),� mentioned� above� (Fig.� 3).� Larger�
segment� lengths� were� better� than� shorter.� The�
optimal�offset�was�4�sec.�That�means�segments�of�all�
EEG-� and� EOG-signals� beginning� 4� sec� before��
MSE-� or� NMSE-starting� points� and� 4� sec� after�
starting�of�an�event�were�optimal.�
�
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Figure�4:�Classification� rates� versus� number�of� neurons.�
5,000� LVQ� networks� were� trained� and� tested� with�
different� training� set� /� test� set� partitions� and� different�
initializations.� Mean� classification� rate� was� computed�
between�30�and�200�neurons.�

�
Further�improvements�in�classification�were�reached�
by�transformation�log(x)�of�spectral�power�density�as�
proposed� in� [14]� and� by� choosing� the� number� of�
neurons.�Fig.�4�shows�a�typical�plot�of�classification�
rate�versus�number�of�neurons.�Classification�success�
is�increasing�up�to�90%�in�the�mean�if�more�than�50�
neurons� were� used,� and� up� to� 91%� with� more� than�
140� neurons.� � With� more� neurons� no� significant�
changes� are� gained.� Standard� deviations� are� nearly�
constant.��
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Figure� 5:� Classification� rates� of� 100� fixed� training� set� /�
test�set�partitions�and�different�initializations.�Grand�mean�
and� standard� deviation� of� mean� classification� rates� was�
computed.�

�
One� might� assume,� that� these� results� were� obtained�
for� a� picked� out� test� set.� Therefore,� we� repeated�
partitioning� many� times.� Classification� results� for�
100�random�partitions�are�shown�in�Fig.�5.�For�each�
partition,�training�and�testing�was�repeated�500�times�
with� different� weight� matrix� initializations.� The�
standard�deviation�caused�by�different�initializations�
of�the�LVQ�network�and�caused�by�training�progress�
due� to� randomly� applied� input� vectors� is� shown� by�
error� bars� in� Fig.� 5.� The� deviations� of� the� mean�
values� are� caused� by� different� partitions� and� also�
caused� by� training� progress� and� are� slightly� higher�
than�the�deviations�caused�by�initialization.�
�
�

5.�Discussion�
�
Some� authors� pronounced� that� a� combination� of�
EEG�and�EOG�measures� should�be�most� successful�
in�predicting�MSE�[7,12,15].�Our�results�give�further�
support� for� this� statement.� Classification� rates� of�
90.4%� in� the� mean� were� unexpectedly� high� and�
standard� deviations� of� 1.4%� were� moderate.� The�
high� discrimination� ability� is� also� important� in� a�
general�sense,�because�sudden�behavioral�transitions�
might� be� detectable�by� analyzing� cortical� potentials�
with�modern�signal�analysis�methods.�
Estimation� of� spectral� densities� as� a� simple� feature�
extraction�method�was� applied�because�of� a� lack�of�
prior� knowledge� for� special� patterns.� Many� authors�
reported�an�occurrence�of�alpha�bursts,�an�increased�
EEG�activity�in�the�alpha�frequency�band,�preceding�
MSE�or�during�MSE�[2,7].�But�some�subjects�do�not�
produce� such� an� activity.� Another� characteristic�



pattern�during�wake� /�sleep� transitions�are�slow�eye�
movements�[12,13],�detectable�in�the�EOG.�Slow�eye�
movements� as� well� as� alpha� bursts� don’ t� occur�
during�every�MSE�and�their�temporal�relationship�to�
the� moment� of� starting� MSE� seems� to� be� loose�
[2,11,16].� Therefore,� we� refrained� from� enforcing�
pattern�specific�analysis.�
Further�investigations�are�necessary�to�validate�these�
results� on� additionally� subjects.� Many� authors�
reported�of� large� inter-individual�differences�of� � the�
EEG-� and� EOG-� characteristic� [2,11,15-17].� It� is�
conceivable�that�the�LVQ�networks�are�representing�
individual� characteristics� of� each� of� the� eleven�
subjects� under� investigation.� Furthermore,� it� should�
be� investigated� if� the�combination�of�EEG-� /�EOG-�
features� and� features� of� pupillography� [4-6]� might�
improve�the�discrimination�of�MSE.��
Another� topic� of� interest� on� the� way� to� drowsiness�
warning� systems� must� be� investigation� on�
discrimination�of�MSE� from�continuously�measured�
and� analyzed� signals.� Besides� of� robust� artifact�
elimination� techniques� additional� driver� status�
estimation�techniques,�like�sleepiness�estimation,�are�
strongly�requested.�
�
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