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Abstract 
 
Electrophysiological and eyetracking signals of eleven subjects recorded in overnight driving simulations were 
analyzed using three different neural networks: learning vector quantization, self-organizing maps and growing 
cell structures. In the first investigation the electrophysiological signals were screened for slow eye movements 
(SEM), a typical pattern of wake-sleep transitions. To characterize the electroencephalogram (EEG) of such 
transitions, the spectral power densities of the simultaneously recorded EEG were analyzed and subsequently 
clustered without the common summation in spectral bands. Any knowledge about the number of clusters didn’ t 
exist. Several hierarchical agglomerative clustering procedures, the winner histogram and the unified distance 
matrix (U-matrix) of self-organizing maps did not provide a consistent estimate of the number of clusters. After 
applying a modified watershed transform to the U-matrix, a stable count of nine different clusters was obtained. 
The proposed method works automatically and is not restricted to two-dimensional maps. The subsequent 
investigations concerned discrimination between eyetracking signals immediately before wake-sleep transitions 
and during awake phases. Among many training runs for several types of neural networks and for several 
training parameters, test-set classification rates of about 80% were obtained for the LVQ3 algorithm, 
processing spectral power densities of pupil diameter only. 
 

1   Introduction 
 
 Driving a car overnight is simultaneously a 
continuous tracking task and a low-event-rate 
vigilance task. As a result of normal fatigue, 
performance in both tasks deteriorates over time and 
can lead to hazardous situations. The proportion of 
lethal accidents caused by short sleep events at the 
steering wheel has been estimated as being up to 
10% [1, 2]. The EEG as a functional measure of 
brain activity has been investigated by several 
authors; for a review see Santamaria & Chiappa [3]. 
They report a great deal of variability in the EEG of 
drowsiness among different subjects. Among others, 
Kuhlo and Lehmann [4] report the slowing of the 
EEG frequency content, mainly slowing alpha  
(7.5 … 12.5 Hz) rhythms, until the disappearance of 
alpha and the appearance of theta (3.5 … 7.5 Hz) 
rhythms. In a large normative study with 200 male 
subjects 24-35 years old, the EEG of drowsiness 
was found to have a considerably more complex and 
variable pattern than in the awake state [5]. In all 
subjects they registered pendular, horizontal eye 
movements with a period time of 3…4 sec, so-called 
slow eye movements (SEM). 
 
 Our first investigations were focused on these 
SEM and the correlated spectral characteristic of the 
EEG. In a recent paper, correlations between fast 

irregular eye movements and EEG segments with 
peak values in the alpha and beta band were 
reported [6], but correlations between SEM and 
EEG measures were not reported. 
 
 Our subsequent investigations were done to 
explore characteristics of eyetracking signals 
immediately before the onset of a wake-sleep 
transition. The measurement of pupil size dynamic 
and eye movements to estimate a subject‘s alertness 
level has been suggested by many research groups 
[6-10]. The first three groups used electro-
oculography (EOG); the later two groups used 
infrared corneal reflection as the measurement 
principle. Our intention is to discriminate eye-
tracking signals of wake-sleep transitions from those 
of awake states.  
 

2   Material 
 
 Eleven subjects (3 females, 8 males) aged 
between 19 and 36 years participated in an 
overnight driving simulator study. Their task was 
intentionally monotonous, simply to avoid major 
lane deviations. One driving session of 25 min 
length was carried out every hour from 1 a.m. to  
7 a.m. EEG was filtered with a 30 Hz lowpass filter 
and recorded in two unipolar and two bipolar 
recordings (C3-A2, C4-A1, O1-C3, O2-C4), as were 



EOG (oblique) and ECG, and digitized at a rate of 
64 samples per second. Afterwards, the EEG during 
a SEM event was segmented to a length of 2 sec. 
SEMs were automatically detected using the cross 
correlation function between the EOG signal and a 
sine-signal. The frequency and the amplitude of the 
sine-signal were estimated by fitting the sine-signal 
to 15 SEM signals from three subjects obtained 
through visual scoring. 
 
 The eyetracker worked in the near infrared with 
an accuracy of 0.65 deg and measured the pupil 
diameter (D) and the horizontal (X) and vertical (Y) 
component of the eye gaze point in the plane of the 
driving simulator screen with a sampling rate of 30 
Hz. The X- and Y-signals had a series of missing 
values during eye blinks. They were substituted for 
by Beziér spline interpolation. Outlier elimination 
was also necessary, especially for the Y-signal 
immediately after an eye blink. The X-, Y- and D-
signals immediately before wake-sleep transitions 
were segmented to a length of 8 sec. 
 
 Before applying the discrete Fourier transform, 
any linear trends in the EEG and eyetracking 
segments were eliminated and a Welch window was 
applied to reduce bias effects due to nonstationarity 
and sidelobe effects. Additionally, the Welch 
method of averaging the periodogram over shifted 
windows was used, enabling a reduction of variance 
by a factor of n-1 (n being the number of shifted 
windows). 

 
3  Clustering of EEG Segments 
 
 The input vectors for the subsequent analysis 
consisted of 47 spectral components (2 to 25 Hz;  
0.5 Hz steps). A principal component analysis 
(PCA) was routinely computed, but there was no 
reason to assume input vectors in a linear subspace 
because the last ten principal components had a 
residual variance of about 8%. A Scree test and the 
Kaiser criteria for the covariance matrix (number of 
eigenvalues greater than one) indicated 13 principal 
components, but they explained only 30% of the 
total variance. 
 
 Five different hierarchical agglomerative 
clustering procedures yielded an inconsistent 
estimation of the numbers of clusters, depending on 
the method, on the termination measure and on the 
standardization of the data [11]. Seven clusters were 
suggested by the centroid method, and six clusters 
were found by the Ward method. The model 
underlying all measures for terminating the 
agglomerative process is too simple. Agglomerative 
clustering methods are incapable of finding an 
optimal solution for non-compact clusters. 
 

 The self-organizing map (SOM) [12] is a 
prototype vector-based neural network method to 
perform cluster analysis. Using the principle of 
competitive learning, the prototype vectors adapt to 
the probability density function of the input vectors. 
The similarity between the input vector x and the 
prototype vector w was calculated using Euclidian 
distance. During training an arbitrary prototype 
vector wj is updated at iteration index t by: 

(t)]-(t)[ (t)h   (t) jcj wxw )t(j η=∆  (1) 

 Where η(t) is a learning rate factor decreasing 
during training and hcj(t) is a neighborhood function 
between the prototype vector wj and wc, the 
prototype vector winning the competition. The 
neighborhood function hcj(t) also decreases during 
training. The neighborhood relationships are defined 
by a topological structure and are fixed during 
training. We used a two-dimensional rectangular 
relationship. In the final phase of training, the fine-
adjustment phase [13], the neighborhood radius is 
very small, leading to updates of the winning 
prototype vectors wc and of their nearest neighbors. 
 

 
Figure 1: Relative winner frequency for a SOM with 
30x40 neurons for Gaussian mixture data 
 

 
 

Figure 2: Relative winner frequency for a SOM with 
30x40 neurons for SEM-EEG data 
 



 In the case of one-dimensional topological 
structures, it can be shown analytically [13] that 
training rule (Eq.1) leads to an approximation of a 
monotonous function of the probability density 
function of the input vectors. Two-dimensional 
topologies result in a compromise between density 
approximation and minimization of mean squared 
error of vector quantization [14]. 
 
 For existing compact regions of input vectors 
and existing density centers, as for Gaussian 
mixtures, the evaluation of the relative winner 
frequency of the prototypes led to a visualization of 
clusters. Figure 1 shows such a gray-level-coded 
winner histogram. Seven areas with increased 
winner frequency are evident. 
 
 The Gaussian mixture data were generated by 
defining seven cluster centers and seven covariance 
matrices and adding normal distributed noise in a 
47-dimensional space, as in our experimental data 
set. The estimated total covariance matrix of the 
generated data set and of the experimental data set 
was nearly the same. 
 
 The black-colored units in Figure 1 are never-
winning neurons (dead neurons), which make it easy 
to distinguish clusters. For the experimental data set, 
a distinction of  regions with increased winner 
frequency is not possible.  
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Figure 3: Definition of the U-matrix and localization 
on the rectangular topological structure, shown for 
the neuron in the center only. Circles: positions of 
neurons; black squares: positions of U-matrix 
elements 
 
 But the SOM contains considerable additional 
information. For example, the distance between 
topological neighboring prototype vectors in the 
feature space can be computed. In the case of 
topology preservation, these prototype vectors 
remain neighbors also in the output space (the two-
dimensional map) [15]. If the distance between two 
neighboring prototypes is small, then they probably 
represent one cluster. Otherwise they probably 
represent different clusters. The visualization of the 
distances between neighboring prototype vectors 
was introduced as the unified distance matrix  

(U-matrix) [16]. In a two-dimensional rectangular 
topology, the U-matrix is calculated in nX columns 
and nY rows. 
 
 For every prototype vector wx,y, where x and y are 
the indices of the topological structure, the 
Euclidian distances dx and dy between two 
neighbors and the distance dxy to the next but one 
neighbor is calculated: 

( ) y,xy,xy,xdx 1+−= ww  (2) 
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The distance du is calculated using the mean over 
eight surrounding distances. With four distances for 
each neuron dx, dy, dxy and du (Figure 3), the  
(2nX - 1) x (2nY - 1) U-matrix is well defined. 

 
 The U-matrix elements were mapped on a gray 
scale. Light gray levels indicate low values, and 
dark gray-levels indicate high values. 
 

 
 
 

Figure 4: U-matrix for SOM from Figure 1 
 
 Scoring the U-matrix of Gaussian mixture data 
(Figure 4) leads visually to seven clusters. As 
expected, the cluster regions on the map are regions 



of small distances between the prototype vectors, 
which are separated by small regions of large 
distances. The U-matrix of the SEM-EEG data 
(Figure 9) has much more complexity. It is difficult 
to determine borders. 
 

 
 
Figure 5: U-matrix for SOM from Figure 2 

 
 Costa et al. [17] propose an automatic 
segmentation of the U-matrix using the watershed 
algorithm of gray scale image processing. Regarding 
high values as mountains and low values as valleys, 
the algorithm can be illustrated by flooding the 
valleys with water; watersheds will be built  
up where the water converges. This algorithm leads 
to closed borders. It’s not difficult to evaluate 
the number of clusters. All prototype vectors  
in one segmented region represent one cluster, and  
the fusion of their Voronoi sets leads to all items  
of a cluster. 
 
 It is difficult to choose suitable initial values for 
each reservoir; otherwise a generation of many 
segments is unavoidable [17]. The number of 
segments can be reduced during initialization by the 
threshold parameter hmin. All values which are lower 
than hmin are assigned to the same value as hmin. 
 
 The results of segmentation are dependent on 
the size of the SOM. With a relatively large number 
of prototype vectors, many clusters are obtained. 
Smoothing the gray level function with a two-
dimensional filter reduces the risk of multiple 
segmentations. The size of the SOM was 
considerably restricted when the topographic 
product [18] was taken into account. The topog-
raphic product is a measure for the correspondence 
of input and output space dimensions. We obtained 
an optimal value for a SOM size of 4 x 6, but the 
segmentation of the U-matrix failed for such small 
maps. Therefore we extended the size but retained 
the ratio of approximately 70%. On the other hand, 
it was shown that the topographic product was a 

good measure for approximately linear manifolds 
only [15]. 
 
 In several regions of the U-matrix (Figure 4, 5) 
black-and-white textures are observable. They 
describe relatively large differences between dx and 
dy and are connected with local stretchings of the 
SOM along one topological coordinate. 
 
 If the dx elements of the U-matrix, for example, 
are visualized only, some segment borders 
disappear. Up to now the following defaults were 
used: 
 

• use of function du(x,y) 

• 3x3-Gaussian filtering 

• watershed transformation 

 
Figure 6: Number of clusters vs. hmin for the  
U-matrix of Figure 5 without generation of new 
regions [7] 
 

 
Figure 7: Number of clusters vs. hmin for the  
U-matrix of Figure 5 with generation of new regions 

 
 The segmentation was repeated many times 
with increasing threshold parameter hmin [17] 
(Figure 6). No plateau in the number of clusters was 
detectable. Therefore we propose a modification 
allowing the generation of new minima regions 
during flooding. For the most extended plateau, we 
obtained 9 clusters (Figure 7). 
 



 The segmentation of the SOM in 9 clusters is 
shown in Figure 8. The segments contain different 
numbers of prototype vectors. The fusion of their 
Voronoi sets, mentioned above, leads to the clusters 
(Figure 9). Cluster 2 and 7 contain input vectors 
with large magnitudes in the alpha1 band (7.5-10.5 
Hz), cluster 9 in the alpha2 band (10.5-12.5 Hz), 
cluster 3 in the theta band (3.5-7.5 Hz) and cluster 5 
in the delta band (1.0-3.5 Hz). In contrast to the 
usual summation in frequency bands, more details 
are available. The input vectors of cluster 2 and 7, 
for example, are large in the same spectral band, but 
they differ in the magnitude range and differ in other 
spectral bands. 
 

 
 
Figure 8: U-matrix from Figure 7 after watershed 
transformation 
 
 From Figure 9 one has the visual impression of 
homogeneous clusters, with the exception of  
clusters 1 and 4. 
 

 
 
Figure 9:   All 1652 input vectors grouped  
in 9 different clusters; horizontal = frequency,  
vertical = item, gray scale = spectral power density 
 
 An advantage of the described method is the 
relatively low number of free parameters and the 
ability to reproduce the results. A comprehensive 
validation of the results remains to be carried out. 

4 Discrimination of Eyetracking 
Signals 
 
 We applied three types of prototype vector-
based neural networks: the Learning Vector 
Quantization network (LVQ) [13], Self-Organizing 
Maps (SOM) [12] and Growing Cell Structures 
(GCS) [14]. LVQ is a network with supervised 
learning; here the binary information as to whether a 
wake-sleep transition is immanent was used as 
teaching input. Kohonen suggested three 
modifications: LVQ1, LVQ2 (LVQ2.1) and LVQ3. 
The first modification uses an adapted step size, 
whereas LVQ2 leads to an adaptation of neurons in 
interclass regions. LVQ3 additionally allows a slight 
adaptation of weight vectors in intraclass regions. 
 
 GCS networks were trained unsupervised, like 
SOM. After training, both network types were 
calibrated with the binary teaching input. GCS are 
incremental neural networks and with some 
restrictions are able to approximate the probability 
density function of the input vectors. The 
topological structure is a k-simplex. We chose k=1 
and k=2 to be able to visualize. For SOM networks 
we used one- and two-dimensional rectangular 
topologies. 
 
 Each network was trained with several 
parameter settings and with several initializations  
of the weight vectors. Before each training, the 
learning set was randomly partitioned in training set 
(80%) and in test set (20%). After training had 
finished, the reclassification rate was estimated by 
the ratio of correctly classified to all applied input 
vectors of the training set. The classification rate 
was estimated in the same way with input vectors 
taken from the test set. 
 
 Calculations of classification and reclassifica-
tion rates were done in 1.7 · 106 different network 
simulations with different parameter settings, like 
number of neurons, learning rate factor and 
parameters of the neighborhood function and 
different variables selections for the input vectors 
and different learning set partitions. 
 
 The optimal number of neurons ranged between 
8 and 20. With an increasing number of neurons, the 
LVQ network shows better adaptation to the training 
set. The reclassification rate is mostly above 90%, 
but it shows a decreasing ability to generalize, as 
indicated by decreasing classification rates. 
 
 The average maximum classification rate  
was obtained by searching the maximum of the 
mean + standard deviation (upper curve in Figure 
10) for all different settings of the LVQ networks 
(Table 1). The initialization with median assigned to 



each component of the weight vectors the median 
value of this component over all input vectors. 
During data-driven initialization, each weight vector 
was assigned to a randomly selected input vector. 
Furthermore, in the first 30% of all training 
iterations, the network was trained disregarding the 
class membership of an input vector to diminish the 
variance of the classification rate described 
elsewhere [19]. 
 

 
 
Figure 10:  Test-set classification rate (in percent) 
vs. number of neurons for an LVQ3 network. The 
input vectors contain spectral power densities of the 
pupil diameter D only. The lines indicate the mean  
± standard deviation range. 
 
 
Network init scaling D Y X DX DXY 

LVQ1 MED --- 77 69 70 71 72 

LVQ1 DAT --- 77 68 71 70 71 

LVQ1 DAT SQR 76  71 72  

LVQ1 DAT NRM 75  72 75  

LVQ2 MED --- 77  75 74  

LVQ2 DAT --- 79  75 74  

LVQ3 MED --- 80  75 74  

LVQ3 DAT --- 80  75 75  

LVQ3 DAT SQR 77  73 74  

LVQ3 DAT NRM 73  75 79  

 
Table 1:  Average maximum test-set classification 
rate (in percent) with different LVQ networks, 
different initializations and different scaling  
applied to different feature sets (for details  
see text) 
 
 

 We tried a number of different scalings, but we 
want to report only the results of no scaling (---), the 
square root of each input vector component and the 
normalization of each component with respect to the 
sum of all components (relative value). In the 
columns “D” , “Y” , “X” , the input vectors consisted 
only of the spectral power densities of the D, Y and 
X signal respectively. In column “DX”  all spectral 
values of the D and X signal, and in “DXY” all 
spectral values of the D, X and Y signal were used. 
The best results were obtained with the set of input 
vectors obtained from the D signal only. Apparently, 
if we add further components to the input vectors as 
in the columns “XD” and “XYD”, the results are not 
improvable. On the one hand we presented 
supplementary and independent information to the 
neural networks, but on the other hand the number 
of dimensions of the input space was obviously too 
great. 
 
 A typically calibrated SOM is shown in Figure 
11. Large distances of neighbored weight vectors 
are visualized as gray shades using the U-matrix 
[16]. The input vectors of the awake state are 
mapped to the left lower part of the map, whereas 
the input vectors of the wake-sleep transitions 
(microsleep) are mapped to the right upper region. 
The prototype vectors representing the awake state 
have larger distances visualized by darker shades. 
Under the assumption that the SOM has found  
a correct approximation of the probability density 
function of the input vectors, this indicates that  
the microsleep class has a higher density and is 
more compact. 
 

 
 

Figure 11: Typical calibrated SOM. Gray shades 
indicate the U-matrix. Microsleep events (dark 
nodes) and awake states (light nodes) are separable 
with some limitations. Vacancies indicate dead 
neurons. 
 
 



 The differentiated U-matrix (Figure 12) roughly 
shows the region of overlapping classes with light 
shades. The two classes are distributed in only two 
more or less compact and overlapping regions in the 
input space. This could explain the decreasing 
ability of generalization with increasing number of 
neurons and the onset of this effect at small numbers 
of neurons already. 
 

 
 

Figure 12: The same SOM with a differentiated  
U-matrix. Microsleep events (dark nodes) and 
awake states (light nodes) are separable with some 
limitations. Vacancies indicating dead neurons. 
 

network no. of neur. dim. criter. D X DX 

SOM 20 x 1 1  76 72 70 

SOM 20 x 10 2  74 68 68 

SOM 20 x 20 2  72 66 67 

GCS 300 1 PDF 74 74 70 

GCS 300 1 VQE 75 69 69 

GCS 300 2 PDF 74 69 69 

GCS 300 2 VQE 74 68 68 
 

Table 2:  Average maximum test-set classification 
rate  (in percent) with SOM and GCS networks, 
different number of neurons applied to different 
feature sets (for details see text) 
 
 GCS networks were trained and tested  
with the same method as SOM. Additionally, there 
is a fast learning by inserting and deleting neurons 
depending on a local criterion. Two criteria were 
proposed [14]: the mean vector quantization error 
(vqe) and the local probability density function 
(pdf). For the calculation of the pdf, the volume of 
the n-dimensional voronoi cell was approximated 
with the volume of the n-dimensional hypercube, 
generated with the mean local weight vector 
distance [14]. 

 Both networks, SOM and GCS, came to lower 
average maximum classification rates (Table 2). 
This is not surprising because their training is 
unsupervised. 
 
 With SOM and with GCS, the best results were 
obtained processing D data only and mapping on 
one-dimensional topology. In this case, it is not 
significant whether vqe or pdf is chosen as fast 
learning criterion function. When pdf and one-
dimensional topology were chosen, the results were 
about equal for signal D and for X. 
 
 The visualization of the topology yielded no 
results. Between one and three separate topological 
nets grew during training. No net contained a large 
majority of input vectors of the microsleep class. 

 
5    Conclusions 
 
 Prototype vector-based neural networks are  
able to perform cluster and discrimination analysis 
on complex physiological signals during 
drowsiness, like EEG, eye movements and pupil 
diameter dynamic. As already shown by other 
authors [20, 21], discrete Fourier transform is an 
advantageous method for preprocessing the pupil 
diameter signal. However, an analysis by neural 
networks does not necessarily need a reduction of 
features to spectral bands. Several authors have 
reported large interindividual differences in 
papillary measurements [6-10, 20-22]. In such cases, 
neural networks are recommended over the often- 
used analysis of variance, correlation analysis or 
student t-tests because neural networks are not based 
on any assumption of the probability density 
function. They are model-free methods and are 
restricted to representative data sets and to the 
existence of compact regions in feature space only. 
As shown earlier, a discrimination of wake-sleep 
transitions is also possible using other types of 
neural networks [23]. 
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