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ABSTRACT: This paper introduces modifications of Self-Organizing Maps allowing imputation and classification of 
data containing missing values. The robustness of the proposed modifications is shown using experimental results of a 
standard data set. A comparison to modified Fuzzy cluster methods [Timm et al., 2002] is presented. Both methods 
performed better with available case analysis compared to complete case analysis. Further modifications of the SOM 
using k-nearest neighbor calculations result in lower classification errors and lower variances of classification errors. 
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INTRODUCTION 

Missing values are a common problem in many data mining applications. They represent loss of information and are in 
general not restorable. Depending on their origin a restoration becomes possible if further knowledge is provided or if 
their appearance is the result of a random process. Some exemplary causes of their appearance are  

- errors in sampling, in transmission, in storing or in pre-processing, 
- high costs to get the missing information, 
- lapses in experimental design 
- if dealing with questionnaires insufficient knowledge, or low motivation, inattentiveness, refusal to answer 

may have played a role. 
We define missing values for cases where an attribute value is missing but it is possible to get this attribute in principle. 
On the other hand empty values are present if it is not possible to get this attribute, because the real object has no 
counterpart to it [Pyle, 1999]. Therefore an imputation of empty values makes no sense, but is desirable for missing 
values. Classification tasks of data containing missing and empty values are reasonable in both cases.  
The mechanisms of generating missing values are important for further analysis. For a given data set with  
‘m’ samples and ‘n’ attributes let xi = (xi1, xi2,…, xin),  i = 1, …, m, denote the attribute values, which are values  
of a continuous random variable X = (X1, X2,…, Xn). Let fX(xi; θ) be their probability density function,  
which equals the joint distribution of the observed part Xobs of X and the missing part Xmis of X, and is expressed  
by fX(xi; θ) = f Xobs, Xmis(xobs, xmis; θ) .  
Let M = (M1, M2,…, Mn) be a binary indicator variable for all variables Xj (j = 1,…, n), indicating observed values with 
Mij = 1 and missing values with Mij = 0.  
The conditional probability density function of M given X depends generally on a set of parameters θ and on an 
unknown noise parameter ξ : f M | X (m | x; ξ, θ). We call this general case MNAR (missing not at random)  
[Little & Rubin, 1987], because M and Xmis may be dependent variables and ξ may depend on θ. Hence the mechanisms 
of generating missing values are not ignorable, and therefore some authors call this case NI (non-ignorable). 
If on the other hand θ will not provide any information on ξ and vice-versa, and if M and Xmis are independent  
variables and only M and Xobs may be dependent, the MAR condition (missing at random) is fulfilled  
with f M | X (m | x; ξ, θ) = f M | Xobs (m | xobs; ξ).  
If furthermore M and Xobs are independent variables, the MCAR case (missing completely at random) is fulfilled,  
i.e. f M | X (m | x; ξ, θ) = f M (m; ξ). The mechanisms of generating missing values are ignorable, and therefore MAR and 
MCAR are also called ignorable. 
In many applications there is some suggestion of MNAR processes, e.g. interviewees with higher income show a higher 
probability of refusal to answer. But mostly the ignorable case is assumed because of a lack of deeper insight into the 
process statistics. 



Many methods of cluster analysis and many classification methods only allow the complete case analysis, where every 
sample containing missing values has to be eliminated beforehand. Alternatively, if as a consequence of a MAR process 
all missing values are distributed in a few attributes, the elimination of attributes containing missing values may be a 
better choice. Complete case analysis is a rationale if the number of missing values is very small. For example, a data 
set with n = 15 attributes is given and the probability of non-missing values is p = 0.9 . Assume that the missing values 
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processes. Then the probability of complete samples, i.e. the number of available attributes is k = 15, is given by  
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eliminated beforehand. As a consequence a large amount of valuable information is discarded. Therefore the application 
of methods using all available cases becomes necessary. 
This paper introduces modifications of Self-Organizing Maps [Kohonen, 1982] allowing imputation and classification 
of data containing missing values. The robustness of the proposed modifications is shown using experimental results of 
a standard data set. A comparison to modified Fuzzy Cluster methods [Timm et al., 2002] is presented. 

MODIFICATIONS TO SELF-ORGANIZING MAPS 

Artificial Neural Networks are known as robust methods. They are capable to deal with uncertain inputs and also with 
missing inputs [Ishibuchi et al., 1994] [Tresp & Ahmad, 1995] [Gupta & Lam, 1996]. They used Error Backpropagation 
Networks, whereas [Kaski & Kohonen, 1996] applied the Self-Organizing Map (SOM) to the incomplete world 
development data set [World Bank, 1992]. This data set consists of 126 samples (countries) and 39 attributes. As a 
result these authors generated a so called “poverty map”, but a quantitative consideration on the influence of missing 
values is left. 
 
 

 
 

Figure 1: Complete case analysis. Number of misclassified samples versus probability of missing values. Wisconsin 
breast cancer data set; MCAR missing values. Light gray dots: SOM-algorithm, complete case; squares with error 
bars: SOM, mean ± standard deviation; thick line: SOM, trend polynom; thick line with squares: fuzzy c-means, 
complete case; thick line with circles: fuzzy c-means, available case. 



 

SOM is an unsupervised method based on estimation of distances in ℜ n. It is straightforward to show that axioms of a 
metric space, like the positive definiteness and the Schwarz inequality, cannot hold for elements containing missing 
values.  Thus working with a distance-based method is only possible under the assumption that in practical cases the 
degradation due to missing values is low. 
The distance ||x – wj|| between the input vector x of the actual iteration and the prototype vectors wj has to be modified 
by ||diag(m) (x - wj)||, where diag(m) is a matrix in diagonal form containing the elements of the actual indicator  
values m in the main diagonal. The learning rule has also to be modified by introducing the indicator values:   
∆wj(t) = η(t) hcj(t) m (x - wj). Both modifications result in calculations of available cases. This concept is related to the 
pairwise deletion method known from literature [Little & Rubin, 1987]. 
Because of metric violations caused by ||diag(m) (x - wj)|| the determination of the closest prototype vector wc as winner 
of the competition during iterative training of the SOM is erroneous with an unknown probability. In such a case the 
false winner and all prototype vectors in his topological neighborhood are adapted. Among other influences this can 
lead to errors in topological ordering. With a high probability the correct prototype vector should be under the  
first k-nearest prototypes. Therefore we investigated experimentally if the classification errors could be decreased by 
adapting the first k nearest prototypes. At the end of SOM training we perform an imputation of missing values by the 
mean of the related attribute values of the k nearest prototypes. This improves the following calibration step and results 
in lower numbers of errors. 

EXPERIMENTS 

The modified SOM algorithm was tested with the breast cancer dataset [Mangasarian & Wolberg, 1990], which has 458 
samples in the class ’benign’ and 241 samples in the class ‘malign’. In one of the 9 attributes 16 values are missing.  
At first a complete case analysis was performed. The following steps were repeated 200 times for every parameter 
setting: (1) generate additional missing values completely at random by deleting attribute values; (2) execute SOM 
training; (3) execute SOM calibration; (4) count classification errors during the recall phase of the SOM. 

 
 

 
 

Figure 2: Available case analysis. Number of misclassified samples versus probability of missing values. Wisconsin 
breast cancer data set; MCAR missing values. Light gray dots: SOM-algorithm, available case Circles with error 
bars: SOM, mean ± standard deviation; Thick line: SOM, trend polynom; Thick line with squares: fuzzy c-means, 
complete case; Thick line with circles: fuzzy c-means, available case 



Figure 1 shows the classification errors versus (1 - p), the probability of missing values (light gray points). The mean 
values over all trials with a fixed probability of missing values and their standard deviations (squares with error bars) as 
well as a trend polynom were added. For comparison the results for complete case analysis (squares without error bars) 
and the results for available case analysis (circles without error bars) both with the fuzzy c-means algorithm are shown 
[Timm et al, 2002]. Furthermore, for comparisons with the fuzzy algorithms SOMs with few prototypes were used. 
Expected better results with increased number of prototypes are shown with an example in Figure 3 (dash-dot line).  
The SOM consists of 4 x 4 neurons and shows a surprisingly low mean error rate until (1 - p) ≤ 0.25 and is in the same 
range as the fuzzy c-means algorithm for the available case. Disadvantageously the standard deviation is constantly 
growing with (1 - p). The large standard deviations are mainly caused by the random MCAR deletion process and the 
subsequent deletion of incomplete cases. Repeated runs of SOM training and calibration result in much lower standard 
deviations. 
For the available case analysis using SOM the same steps as for the complete case analysis were performed. The only 
differences were the modification of distance calculation and of the learning rule as explained above. The mean values 
and the standard deviations (circles with error bars) as well as the trend polynom are shown (Figure 2). The two results 
of fuzzy c-means algorithms [Timm et al, 2002] are added without changes. 
The number of errors is lowered by performing available case analysis with SOM. Again 4x4 neurons were used. For  
(1 - p) ≤ 0.15 SOM performs better than fuzzy c-means. With increasing (1 – p) the number of errors is increasing, but 
in contrast to the complete case analysis the standard deviations are distinctly lower. Notwithstanding the modified 
fuzzy c-means algorithm seems to be slightly better than SOM for (1 - p) > 0.15. 
A further slight improvement can be obtained using the k-nearest neighbor modification of the SOM (Figure 3). With 
increasing (1 - p) the number of errors is increasing slowlier and the performance is comparable to the fuzzy c-means 
algorithm in the range 0.15 ≤ (1 – p) ≤ 0.40. The standard deviations of modified SOM show no clear difference with 
respect to the unmodified SOM. 
 
 

 
 

Figure 3: Modified available case analysis. Number of misclassified samples versus probability of missing values. 
Wisconsin breast cancer data set; MCAR missing values. Light gray dots: modified SOM-algorithm, available case 
Circles with error bars: SOM, mean ± standard deviation; Thick line: modified SOM, trend polynom; Dashed line: 
unmodified SOM, trend polynom (Figure 2); Dash-dot line: modified SOM with 8x8 neurons, trend polynom; 
Thick line with squares: fuzzy c-means, complete case; Thick line with circles: fuzzy c-means, available case 



 

CONCLUSIONS 

In this paper we investigated the ability of Self-Organizing Maps to deal with missing values. Caused by missing  
values violations of metric spaces can occur with an unknown probability. Though distance based methods, like the 
Self-Organizing Map and the fuzzy c-means algorithm, should therefore be problematic. As it was shown 
experimentally for one data set, both methods can be utilized successfully to the available case analysis and result in 
lower classification errors than in complete case analysis and result in lower variances of misclassification. Probabilities 
of missing values can reach 0.4 without noticeable performance degradation. The performances of both methods  
differ slightly. SOM performed better at low probabilities of missing values, whereas the fuzzy c-means algorithm tends 
to be better at higher probabilities of missing values. 
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