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Abstract⎯ Short segments of EEG, EOG and pupil diame-
ter signals recorded in overnight driving simulation ses-
sions of 21 young subjects were extracted during micro-
sleep events and during fatigue states, where driving is still 
possible. Both classes were found by video based subjec-
tive scoring of experts. Estimated spectral power densities 
were used as input vectors of several classification met-
hods. Results of multiple hold-out method of cross valida-
tion are compared. Support-Vector Machines show lowest 
mean and standard deviation of estimated test errors of 
(9.7±0.8) % by processing 6 channels of EEG and EOG. 
With same methods but with only one pupillometric chan-
nel errors are about 10 % higher. Shifting signal segments 
in time leads to rapidly increasing test errors; pure prog-
nosis of ongoing events is possible, but with mean errors 
higher than 27.5 %.  
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Introduction 
Sleepiness is estimated as the most significant identifiable 
and avoidable cause of accidents in transport. Their portion 
among all accidents is estimated as 15 to 20 % and is ex-
ceeding in this respect the importance of alcohol and drugs 
[1]. Among several technological concepts the recognition 
of driver states based on electrophysiological measures, 
mostly EEG and EOG [2-4], and based on oculomotoric 
measures, especially eye movements, pupil diameters and 
eye lid movements, are considered [5-7]. Dangerous states 
are microsleep events (mse), which appear as short intru-
sions of sleep into wakefulness and happen in monotonic 
situations which require continuing attentiveness. 
 
Material and Methods 
Here we present results of overnight driving simulation 
sessions of 21 young subjects (18 - 32 years). Points of 
time were marked when mse are ongoing and when fatigue 
states (non-mse) are observable. During non-mse driving is 
still possible. Both events were found subjectively by ex-
perts by off-line scoring of two video recordings of driver's 
portrait and right eye region. Recorded EEG (C3-A2,C4-
A1,C3-O1,C4-O2), EOG (vertical, horizontal) and pupillo-
gram were segmented with variable length and offset. The 
last parameter is defined as the difference in time between 
mse or non-mse and first sample in segment.  
Estimated spectral power densities were used as inputs of 
the following classification methods, with which we have 
experiences and tested implementations:  
1.) Learning Vector Quantization, with variants LVQ1, 

LVQ2.1, LVQ3 and OLVQ1 [8] 
2.) Support-Vector Machines (SVM) with Gaussian kernel 

function [9] 

3.) Self-Organizing Maps (SOM), calibrated, with modifi-
cation supervised [10] 

4.) Growing Cell Structures (GCS), calibrated, with modi-
fication supervised [11] 

5.) k-Means (kM), calibrated, with modification super-
vised [12] 

Classification errors are estimated by multiple hold-out. 
This method of cross validation repeats random partitio-
ning of all data into test and training set and uses descrip-
tive statistics to assess capability for generalization and 
adaptivity, respectively. 
 
Results 
As expected, supervised methods (LVQ, SVM) result in 
lower classification errors than calibrated unsupervised 
methods (GCS, SOM, k-Means).  SVM performs best and 
achieves test errors below 10 % and achieves lower stan-
dard deviations (Tab.1). Though a series of parameter 
optimizations were done, the results of pupillometric 
measures are unsatisfactory. This is not surprising because 
in contrast to EEG / EOG, where up to six signals were 
processed, here only one signal was analyzed. On the other 
hand, loss of data due to eye lid closures leads to interpo-
lated parts of the signal, which contain only dependent 
information and are therefore not beneficially. Results of 
eye gaze signals (eyetracking) were more badly and should 
be therefore not presented. 
 

Table 1: Mean and standard deviation of test errors for 
different classification methods 

Classification 
Method 

EEG / EOG 
ETEST [%] 

Pupil Diameter 
ETEST [%] 

LVQ1  14,9 ± 1,3 28,7 ± 1,7 
LVQ2.1  14,8 ± 1,4 28,7 ± 1,7 
LVQ3  14,9 ± 1,4 28,7 ± 1,7 

OLVQ1  14,0 ± 1,2 28,2 ± 1,6 
SVM  9,7 ± 0,8 19,2 ± 1,7 
kM  16,6 ± 1,5 29,8 ± 1,8 

kM, sv  15,0 ± 1,4 29,0 ± 1,7 
SOM  17,7 ± 1,6 32,8 ± 1,8 

SOM, sv  14,4 ± 1,3 28,3 ± 1,6 
GCS  16,1 ± 2,1 30,1 ± 1,9 

GCS, sv  14,7 ± 1,9 28,0 ± 1,8 
 
By varying offset between events and signal segments the 
ability to predict ongoing events is judgeable. A sensitive 
dependence of errors from offset was found (Fig. 1). Opti-
mal segment length were found in empirical investigations, 
not mentioned here, to be about 8 sec. Optimal offsets are 
at -3 sec. In this case 3 sec of signal are immediately before 



an event and 5 sec of signal are during an event. Decreas-
ing offsets below -8 sec would lead to segments com-
pletely before an event. Mean classification errors for such 
cases of pure prognosis are above 27.5 % (Fig.1). Valida-
tion of SVM was performed by leave-one-out method, 
which is effectively calculable in case of SVM and leads to 
comparable estimations [13]. 
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Figure 1: Mean test errors versus segmentation offset; a 
comparison of OLVQ1 and SVM on EEG and EOG   

 
Discussion 
We observed large behavioural differences between sub-
jects during drowsiness. Two subjects showed no visible 
sign of clear mse; other showed many extended episodes of 
mse. Furthermore, all results were obtained in a laboratory 
situation; the extent of degradation in case of real on-the-
road measurements is not predictable. Our results were 
based on electrophysiological measures in six different 
channels.  Based on a contact-less measured signal degra-
dations in test errors of about 10% occur. For all this rea-
sons we summarize that practicable applications in mi-
crosleep warning devices are not inferable.  
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