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Abstract  

Overnight driving is associated with increased accident risk due to impaired alertness and reduced performance. 
As a consequence of monotony and factors like time-of-day, time-since-sleep and time-on-task, fatigue is gener-
ally increasing during driving. This increase is not always monotonically, but often shows slow waxing and wan-
ing patterns, which can be recognized in measures of driving performance and repeatedly self-reported sleepi-
ness. The presented study shows that simultaneous changes in EEG can be found by pattern recognition methods. 
 

1 Introduction 

Overnight driving is associated with increased risk of 
accidents due to impaired alertness and reduced per-
formance. The importance of fatigue as a risk factor is 
exceeding the impact of drugs and alcohol [1]. Main 
causal factors are considered as [1]:  
a) time-of-day, i.e. influences of circadian rhythm, 
b) long durating wakefulness (time-since-sleep), 
c) inadequate sleep and accumulated lack of sleep, 
d) pathological sleepiness caused by diseases, e.g. 

sleep apnea or narcolepsy, 
e) prolonged work hours which are not necessarily 

behind the wheel (time-on-task). 
There are also psychological variables influencing the 
actual level of fatigue, e.g. motivation, stress, and mo-
notony. Monotony is believed to play an important 
role because driving is, in most situations, a low-
event, simple lane-tracking task. Fatigue is not always 
increasing monotonically during driving, but often 
shows slow waxing and waning patterns, which can be 
recognized in measures of driving performance and 
repeatedly self-reported sleepiness [2]. 
There are many biosignals which are more or less 
coupled to fatigue. Among them, the EEG is a rela-
tively direct functional reflection of mainly cortical 
activities and to some low degree also subcortical ac-
tivities. Therefore, it should be the most promising 
signal to find a good measure. Akerstedt et al. [3] 
showed that with increasing working time subjectively 
rated sleepiness strongly increases and EEG shows a 
significant but moderate increase of hourly mean spec-
tral power density only in the alpha band but not in the 
theta band. In contrast, Makeig & Jung 1995 [4] con-
cluded from their study that the EEG typically loses 
its prominent alpha and beta frequencies as lower fre-
quency theta activity appears when performance is de-
teriorating due to strong fatigue. Subjects performing 

an auditory detection task [5] show performance 
lapses accompanied by counterbalanced changes in 
vertex EEG power spectral densities; there is an in-
crease around 4 Hz and a decrease around 40 Hz. Also 
in continuous visuomotor compensatory tracking task 
sleep deprived subjects [6] show increasing EEG 
power densities in the lower theta range (3-4 Hz) dur-
ing periods of poor performance. Many authors re-
ported of very high inter-individual variances some-
times showing counteracting EEG. The presented 
study shows that simultaneous changes in EEG can be 
found by pattern recognition methods. 

2 Material and Methods 

Twelve healthy volunteers (3 female, 9 male, 21.4 ± 
2.1 years) participated in an overnight study from 1 
a.m. to 8 a.m. Wakefulness after normal daytime and 
evening activities was continued of at least 16 hours 
prior to first driving simulation, which was verified by 
wrist actometry. During each of seven sessions (dura-
tion: 40 min.) in our real car interactive driving simu-
lator subjects were asked every 2 min to report orally 
their subjectively perceived sleepiness using Karolin-
ska Sleepiness Scale (KSS) [7]. KSS values were di-
vided in two groups: moderate fatigue (KSS<8) and 
strong fatigue (KSS≥8).  
Driving tasks were chosen intentionally monotonous 
to provoke drowsiness and microsleep events (MSE). 
The latter are defined as short intrusions of sleep into 
wakefulness under demands of attention. They were 
detected online by the experimenter who observed 
subjects left eye region, her/his face, and driving 
scene utilizing three infrared video cameras. If MSE 
were observed and values of KSS<8 were actually re-
ported, then this example was reassigned to “strong 
fatigue”. 



EEG was recorded from occipital, central and fron-
topolar locations (O1, O2, C3, C4, Cz, Fp1, Fp2). Ad-
ditionally, submental EMG and EOG (vertical, hori-
zontal) were recorded. Unfortunately, EOG had to be 
excluded from further analysis because of technical 
problems. Entropies of the output signals of a 7-stage-
wavelet decomposition tree and Power spectral densi-
ties were used as input vectors of several machine 
learning algorithms [8]. Here we report only on the 
results of Learning Vector Quantization. 

3 Results 

For each single EEG channel the segment length was 
varied in the range of 10 to 300 sec to find an empiri-
cal optimum utilizing multiple hold-out cross valida-
tion. Training errors (Fig.1) showed a monotonically 
decrease which is roughly proportional to the number 
of segments (dashed plotted). Small segment lengths 
lead to a high number of input vectors following to 
higher complexity presented to the classification algo-
rithms and therefore to higher error rates. Test errors 
showed no significant optimum; values between 60 
and 240 sec seem to be good choices. Classification of 
single channel EMG (diamonds) resulted in relatively 
high errors, while the combinations of O1, O2 (stars), 
of C3, Cz, C4 (squares) and Fp1, Fp2 (circles) per-
formed much better. Best results were obtained by 
combining all EEG channels (bold dots) on the feature 
level. 

Fig. 1 Mean and standard deviations of classifica-
tion errors on training sets (lowest graph) and on test 
sets  (upper five graphs) of different signals. 
 
The question arises if machine learning algorithms 
have found some generally valid properties of fatigue 
in EEG. This was checked out by cross validation on 
the subject level. Learning algorithms were tested on 
all data of only one subject after they were trained on 
all data of all other subjects. This was repeated for 
every subject. Results show high inter-individual vari-
ability (Fig. 2) indicating that common characteristics 
were rarely found. EEG characteristics of e.g. subject 
10 can not be explained by the data of all other sub-

jects, because mean errors of 50% are as high as them 
of completely random classifications. In contrast, it 
was possible to explain the EEG characteristics of 
subject 8 by relatively low mean errors of 15%.  

Fig. 2 Mean and standard deviations of errors of 
one subject tested against all other.  

Training errors indicate that the learning algorithm 
had in all cases no problems to adapt to the given data 
sets. Future work has to validate the stability to intra-
subject variations and has to show if groups of sub-
jects can be established with similar EEG characteris-
tics concerning strong fatigue. 
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