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Abstract. A novel approach for Microsleep Event detection is presented. This 
is achieved based on multisensor electroencephalogram (EEG) and 
electrooculogram (EOG) measurements recorded during an overnight driving 
simulation task. First, using video clips of the driving, clear Microsleep (MSE) 
and Non-Microsleep (NMSE) events were identified. Next, segments of EEG 
and EOG of the selected events were analyzed and features were extracted 
using Power Spectral Density and Delay Vector Variance. The so obtained 
features are used in several combinations for MSE detection and classification 
by means of populations of Learning Vector Quantization (LVQ) networks. 
Best classification results, with test errors down to 13%, were obtained by a 
combination of all the recorded EEG and EOG channels, all features, and with 
feature relevance adaptation using Genetic Algorithms. 

1   Introduction 

One of the main problems associated with data fusion for real-world applications  
is related to combining the information coming from heterogeneous sensors, acquired 
at different sampling rates and at different time scales. Data/sensor fusion approaches 
dealing with combining data from homogeneous sensors are normally based  
either in the time domain, or in some transform domain, for instance on features  
coming from the frequency representation of signals, their time-frequency, or state-
space features [1]. 

Notice that in this framework we deal with multivariate and multimodal processes, 
for which either there are no precise mathematical relationships, or if they exist they 
are too complex. Such is the case with the detection of lapses of attention in car  
drivers, due to fatigue and drowsiness, the so-called Microsleep Event. Their robust 
detection is a major challenge. Recent developments in this field have shown that 
most promising approaches for this purpose are based on a fusion of multiple  
electrophysiological signals coming from different sources together with Artificial 
Neural Networks in the detection and prediction [2-4].   

In general, there are two standard approaches to combine multiple electro-
encephalogram (EEG) and electrooculogram (EOG) signals. In the first approach, 
called Raw Data Fusion the sensor data are merged without prior preprocessing or 
dimensionality reduction. Despite its simplicity, the major disadvantage here is the 
potentially vast amount of data to be handled. In the second approach, the so-called 
Feature Fusion, features extracted from signals coming from different sources and/or 
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extracted by different methods are fused. In our investigations, the frequency domain 
features obtained from the Power Spectral Density (PSD) [4] and state space features 
obtained from the Delay Vector Variance (DVV) [5, 6], are combined in order to 
show whether such a combination of different features shows improvement in MSE 
detection over the standard approaches using only one of the signals and one class of 
features. The motivation for such an approach is as follows: PSD estimation is a  
“linear” frequency domain method which can be conveniently performed using the  
periodogram. This has been shown to perform particularly well in applications related 
to EEG signal processing, [2-4]. It is, however, natural to ask ourselves whether such 
an approach, based solely on the second order statistics conveys enough information 
to provide fast and reliable detection of such a complex event as the MSE.  

On the other hand, the recently introduced DVV approach [5, 6] is a method based 
on the local predictability in the state space. The virtue of the DVV approach is that it 
can show both qualitatively and quantitatively whether the linear, nonlinear,  
deterministic or stochastic nature of a signal has undergone a modality change or not. 
This way, the DVV methodology represents a complement to the widely used linear 
PSD estimation. Notice that the estimation of nonlinearity associated with the DVV 
method is intimately related to non-Gaussianity, and we also set ourselves to 
investigate whether this additional information, which cannot be estimated by PSD, 
contributes to the discrimination ability, and if so, to estimate its importance level, as 
compared to the PSD based discrimination.  

The purpose of this paper is therefore to provide a theoretical and computational 
framework for the combination of the two classes of features (PSD and DVV) and to 
show whether such a combination has the potential benefits for multivariate and 
multimodal signals over standard approaches. This is illustrated on a practical 
problem of detection of MSE in car drivers. Reliable methods to detect MSE in 
continuously recorded signals will be an important milestone in the development of 
drowsiness warning systems in real car cockpits. At present, however, achieving 
highly reliable MSE detection [3] is still a major issue to be resolved. 

2   Data Fusion Architecture 

To achieve the detection of MSE in real-world car driving situations, both estimated 
feature sets are merged by an adaptive feature weighting system (Fig. 1). The error of 
the training set is used to optimize the parameters of feature extraction based on PSD 
and DVV and also serves as fitness function in a genetic algorithm that examines the 
relevance of the different features employed. Subsequent multiple hold-out validation 
of LVQ networks yields the mean test set error for the evaluation of MSE detection 
ability. Consequently, test set errors were not used, directly and indirectly, for any 
step of optimization. 

Fig. 1 shows the block diagram of the proposed data fusion system, which allows 
for the solution of the extensive data management problem in real time processing of 
multivariate and multimodal signals. Fusion based on features provides a significant 
advantage by means of a reduction in the dimensionality of the space in which the 
information to be processed resides. There is a trade-off associated with this strategy, 
since in principle, feature fusion may not be as accurate as raw data fusion because 
portions of raw signal information could have been eliminated. 
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Fig. 1. Proposed Microsleep detection system based on feature fusion 

In general, it is not known a priori which features within the different sets of 
features (EEG-FFT, EEG-DVV, EOG-FFT, EOG-DVV) are best suited for detection 
of MSE. It is intuitively clear that the obtained features differ in their importance level 
with respect to the classification accuracy. We therefore combine all different feature 
sets obtained from EEG and EOG by means of PSD and DVV. To prove whether our 
hypothesis that a combination of features coming from two different sources will 
indeed improve classification accuracy, we propose to use Genetic Algorithms (GA) 
to determine a scaling factor for every single feature coming from the four different 
sets. The scaling factors are used as gene expressions and the training error rate as 
fitness function. The sensitive adaptation of scaling factors by GA leads to a weighted 
Euclidean metric in the feature space, and can be interpreted as relevance factors [12]. 
For the purpose of comparison, the classification task is also performed without 
application of the relevance adaptation step (Fig. 3). 

3   Experimental Setup 

Our experimental setup was similar to the one presented in [4]. Seven EEG channels 
from different scalp positions and two EOG-signals (vertical, horizontal)  
were recorded from 23 young subjects (age range: 19 - 35 years) during driving 
simulation sessions lasting for 35 minutes. These sessions were repeated every hour 
between 1 a.m. and 8 a.m. This way, the likelihood of the occurrence of MSE was 
gradually increasing due to at least 16 hours without sleep prior to the experiment.  

MSE are typically characterized by driving errors, prolonged eye lid closures or 
nodding-off. Towards automatic detection, two experts performed the initial MSE 
scoring, whereby three video cameras were utilized to record i) drivers portrait, ii) 
right eye region and iii) driving scene. For further processing, only clear-cut cases, 
where all the experts agreed on the MSE, were taken into account. Despite providing 
enough test data to tune our algorithms, the human experts could not detect some of 
the typical attention lapses, such as the one with open eyes and stare gaze. The 
number of MSE varied amongst the subjects and was increasing with time of day for 
all subjects. In all 3,573 MSE (per subject: mean number 162±91, range 11-399) and 
6,409 NMSE (per subject: mean number 291±89, range 45-442) were scored. This 
clearly highlights the need for an automated data fusion based MSE detection system, 
which would not only detect the MSE also recognized by human experts, but would 
also offer a possibility to detect the critical MSE cases which are not recognizable by 
human experts. 
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4   Feature Extraction 

In our experimental set-up, we varied two preprocessing parameters, the segment 
length and temporal offset. Evaluating test errors of our processing cue (Fig. 1) 
without relevance adaptation yields an optimal offset of 3 and 1sec and optimal 
segment length of 8 and 4 sec for the PSD and DVV, respectively. This means that 
EEG and EOG segments are beginning 3/1 sec (PSD/DVV) before and are finishing 
5/3 sec after the onset of (N)MSE.  

 
 
Fig. 2. Feature relevances for MSE detection 
estimated using GA 
Fig. 2a. (left top): Normalized feature 
relevances for different data channels of EEG 
and EOG 
Fig. 2b. (left bottom): PSD feature relevances 
over all EEG and EOG signals 
Fig. 2c. (right bottom): DVV feature 
relevances over all EEG and EOG signals 

  
 

The preprocessing involves linear trend removal and applying the Hanning window 
to the data segments. PSD estimation was performed by the discrete Fourier 
transform. The so calculated PSD coefficients were averaged within 1.0 Hz wide 
bands. Further improvements in classification were achieved by applying a monotonic 
continuous transformation log (x) to the PSD [7]. 

The linear feature extraction method PSD was accompanied by a feature extraction 
method originating from the nonlinear dynamics, the DVV. The DVV features were 
calculated with the embedding dimension (m=3). Basically, they are variances of 
distances between delay vectors calculated on original and on surrogate data; further 
details are presented elsewhere [5, 6]. In contrast to PSD features, classification 
results did not improve by applying log(x) to DVV features. 

Before examining the MSE detection performance in such a feature fusion setting, 
we perform a rigorous analysis of the feature relevance for the different EEG and 
EOG signals. This was achieved by means of GA. The relevance scores for the single 
EEG and EOG signals (Fig 2a) were calculated and normalized using the sum over all  



 Fusion of State Space and Frequency-Domain Features 757 

 

EEG    EEG    EEG    EEG    EEG    EEG    EEG    EOG    EOG      EOG    EEG  EEG+EOG EEG+EOG
0

5

10

15

20

25

30

35

40

45

50

T
es

t  
E

rr
or

 [%
]

A1        C3        Cz        C4        A2        O1        O2        horizontal vertical  all       all       Cz        all    allvertical  

DVV
PSD
PSD+DVV
PSD+DVV+GA

 

Fig. 3. Mean values and standard deviations of test errors for different single signals (first 9 
groups) and for different combination of fused signals (last 4 groups) 

feature relevance coefficients (35 for PSD, 24 for DVV). The normalized relevances 
for each PSD feature (Fig. 2b) and each DVV feature (Fig. 2c) were determined by 
averaging relevances of all single EEG / EOG signals. 

5   Discriminant Analysis 

Feature sets extracted by both methods (PSD and DVV) and of each of 7 EEG and  
of 2 EOG signals are merged in their multiple combinations both without and with an 
adaptive feature scaling system (GA). For each feature vector a label “MSE” or 
“NMSE” was assigned, thus introducing a two-class classification setting. Networks 
utilizing the OLVQ1 learning rule were used for analysis. Multiple hold-out 
validation [8] of the LVQ networks yields the mean test set error depicted in Fig 3. 
The test error rate was estimated as the ratio between the number of false 
classifications and the number of all classifications. 

The error bars in Fig. 3 represent the standard deviation, which is caused by 
different initializations of LVQ networks and by the nature of the training progress 
due to randomly applied input vectors. To avoid the possibility of excellent results for 
some arbitrary settings, we repeated random partitioning 50 times, following the 
paradigm of multiple hold-out validation. For each partition, training and testing were 
repeated 25 times with different weight matrix initializations.  The LVQ network was 
trained and tested by different selections of signals. Every signal was first selected 
alone for both training and testing (Fig. 3, first 9 groups). The feature extraction 
methods, PSD and DVV, were applied individually and in combination.  The best 
single channel detection result was achieved with a combination of PSD, DVV and 
GA for the EOG channel ‘vertical’ followed by the EEG channel ‘Cz’. 

In an earlier work we pronounce that a combination of EEG and EOG measures 
should be most successful in predicting MSE [4]. Our results (Fig. 3, right) lend 
further support to this statement, independent from the feature extraction method 
used. Our simulations on DVV and PSD features achieved mean test error rates  
of 28 % and 17 % respectively. We judge the standard deviations of 1.4 % as 
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moderate. The fusion of DVV and PSD features from all signals, which yields 531 
features (7 EEG + 2 EOG signals) x (35 PSD + 24 DVV features), gained only a 
small improvement in the test error rates, namely from 17 % to 16 %. This result is 
not satisfactory enough and can be corrected by applying a GA where the DVV and 
PSD features had to compete with each other regarding their relevance for the MSE 
detection. After multiplying each feature with the estimated relevance factor obtained 
by GA, the training of LVQ was repeated. This way the best test error rate of 13 % 
was achieved. 

6   Conclusions 

We have presented an adaptive system for the analysis of Microsleep events (MSE), 
where several combinations of feature fusion were used for MSE detection and 
classification by means of populations of Learning Vector Quantization (LVQ) 
networks. Best results, with test errors down to 13 %, were obtained by a combination 
of all the recorded EEG and EOG channels, all features, and with feature relevance 
adaptation using Genetic Algorithms (GA).  

Due to their complementing abilities to represent the linear and nonlinear nature of 
the EEG and EOG signals [13], simple feature extraction methods, PSD and DVV, 
were applied before and during an onset of a MSE. The results showed PSD to be 
more effective as a feature extraction method. This was also confirmed by our feature 
relevance results using GA, which detects features that were most relevant for the 
MSE detection. The relevances of the PSD features were similar to other findings  
[2-4], but for the understanding of the DVV feature relevance more research is 
needed. Furthermore, there are large inter-individual differences of the EEG- and 
EOG- characteristic [9, 10]. It would be interesting to ascertain whether the found 
feature relevance distribution can be confirmed or whether the DVV features play 
more significant role in certain cases. In general, there are strong indications that the 
role of the DVV features as compared to PSD features increases for the EOG signals. 
Another issue to be investigated is the fusion of EEG- / EOG- features and other 
oculomotoric features such as pupillography [11] using a greater variety of feature 
extraction methods. This is likely to improve and stabilize the discrimination of MSE, 
an issue of important real world applications.  
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