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Abstract. To track the alertness changes of 14 subjects during a night
driving simulation study traditional alertness measures such Visual Ana-
log Sleepiness Scale, Alpha Attenuation Test (AAT), and number of Mi-
crosleep events per driving session were used. The aim of the paper is to
assess these traditional alertness measures regarding their mutual cor-
relations, revise one of them (AAT) and introduce new more general
methods to capture changes in human alertness without too many con-
straints attached. The applied methods are utilizing data fusion methods
and data discrimination capabilities via Learning Vector Quantification
networks. The advantage of using more general data analysis methods
which allows one to assess the validity of proposed alertness measures and
opens possibilities to get a more comprehensive knowledge of obtained
results.

1 Introduction

Recent technical developments have produced a 24-hour, advanced society that
continues to grow on a global scale. Consequently, the basic human circadian
rhythm (”working during the day and sleeping at night”) is under constant siege.
Because of the long working hours that eat up people’s sleeping time, a general
deterioration of people’s daytime alertness and an increase in driver drowsiness
is seen. Especially, accidents caused by drowsy drivers have a high fatality rate
and high costs. To prevent these accidents a reliable tool to accurately measure
human alertness levels is needed.

The first attempts to quantify human alertness were subjective reports that
consisted of documenting the individual’s self-assessment. The main measures
include the Stanford Sleepiness Scale (SSS), the Visual-Analog Scale (VAS), and
the Epworth Sleepiness Scale (ESS). More objective measures of human alertness
can be derived from electroencephalogram (EEG) and electrooculogram (EOG)
data. For example, the Multiple Sleep Latency Test (MSLT) measures the time
to fall asleep while lying in a quiet, dark bedroom on repeated opportunities
at 2 hours intervals throughout the day using EEG for sleep onset determina-
tion. The Maintenance of Wakefulness Test (MWT) requires that subjects sit
in chairs in a darkened room and remain awake for 40 minutes. After applying
different mathematical and statistical techniques, EEG-frequency bands (delta,



theta, alpha, beta, etc.) were used to define a variety of parameters, such as slow-
wave activity, alpha slow-wave index, the alpha quotient, and others to estimate
alertness. More and more, such alertness parameters have been introduced, in
general using the Power Spectral Density (PSD) and multiple combinations of
EEG-bands. A good review of the subjective and objective alertness measure
can be found in [5] and [6]. Because of the shortcomings of these methods, a new
test was developed by Michimori et al. in [1], the Alpha Attenuation Test (AAT)
using the occipital (O1) - auricular (A2) EEG-derivation. The AAT is defined
as ratio of Eyes-Closed (EC) to Eyes Open (EO) PSD of the alpha band (8 Hz
- 12 Hz).

However, there are several drawbacks to all these proposed alertness measures.
First, they are based on the countless definitions involving the PSD of a variety
of EEG bands. Second, the definition of the EEG-frequency bands introduces
artificial boundaries for the data analysis. Third, the separate analysis of the
EEG-channels and frequency bands often leads to inconsistent results. Therefore,
more general methods with less predefined assumptions are needed for compre-
hensive human alertness estimation. In order to identify insufficient perceptual
capabilities (e.g. prolonged eye closure) and no ability to process external infor-
mation (e.g. microsleep) reduced alertness should be defined as a combination of
brain (EEG) and eye function (EOG). There are modern concepts of data fusion
to combine multiple EEG and EOG signals in a way that ensures optimal infor-
mation gain. For example, a Feature Fusion (FF) approach in combination with
Learning Vector Quantization (LVQ) networks was already successfully applied
by Sommer et al. in [3] for improving the detection of Micro-Sleep Events (MSE).
The FF approach and the ability of LVQ networks to classify and discriminate
data with low error rates [4] was utilized for the definition of generalized alertness
measures. The high sensitivity of LVQ networks to small and unknown changes
in the data is exactly what is required to detect variations in human alertness
which are hidden in EEG and EOG.

2 Study Design and Data recorded

Fourteen young adults participated in nigh time driving study at the University
of Schmalkalden. They arrived at the driving simulator facility in the evening,
after a day of normal activity and at least 16 hours of continuous wakefulness,
which was checked by wrist actigraph. After being wired up for EEG recordings,
they started driving on a driving simulator at 1:00 A.M They had to complete
seven driving sessions lasting 40 min, each followed by a 10 min period during
which they estimated their subjective alertness using a VAS and performed a 5-
minute AAT with five alternating 30 seconds Eyes-Open (EO) and Eyes-Closed
(EC) episodes. Before the next driving session a 10-min break was scheduled.
Experiments ended at 8:00 A.M. During the entire study seven EEG channels
from different scalp positions (A1, A2, C3, C4, Cz, O1, 02) and two EOG-signals
(vertical, horizontal) were recorded. The driving tasks were monotonous by de-
sign to induce drowsiness and Micro-Sleep Events (MSE). MSE are typically



characterized by driving errors, prolonged eye lid closures or nodding-off. Two
experts performed an initial manual MSE scoring. Three video cameras were
utilized to record (1) drivers face, (2) right eye region and (3) driving scenario.
The number of MSE varied amongst subjects and increased during the night for
all subjects indicating a clear deterioration in alertness.

The preprocessing of the all EEG and EOG data involved linear trend removal
and applying the Hanning window to the data segments. Power Spectral Den-
sity (PSD) estimation was performed by the discrete Fourier transform. The so
calculated PSD coeflicients were averaged within 1.0 Hz wide bands. Further im-
provements in classification were achieved by applying a monotonic continuous
transformation log(z) to the PSD.
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Fig. 1. Design of the driving simulator study.

3 VAS, MSE and AAT - Correlation Results

First, we present results obtained from VAS, MSE and AAT per driving ses-
sion. Because of the different nature of the parameters, only the relative changes
are meaningful as alertness measures. VAS score and number of MSE increase
with reduced alertness, whereas the value of the so-called Alpha Attenuation
Coefficient (AAC) decreases. The measures used are not only different in their
correlation to alertness; they are different in the time period they cover. VAS
reflects a punctual subjective alertness estimation. The AAT provides an ob-
jective alertness measure for a 5 minute period and the number of scored MSE
per driving session gives an alertness score for a 40 minute period. A reliable
EEG based alertness measure on a time scale of five minutes would be extremely
useful for many applications. Therefore, we will focus on the Alpha Attenuation
Coefficient (AAC), which was introduced by Michimori in [1] and is defined as



ratio between the PSD of the alpha band (8 Hz - 12 Hz) for EC and EO episodes,
respectively.

Alertness Measures "VAS", "AAC", "MSE-Count"
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Fig. 2. Averaged, scaled results with Standard Error for VAS, MSE and AAC.
Correlations: "VAS-MSE’= 0.99; "VAS-AAC’= —0.99; '"MSE-AAC’= —0.98.

Despite the different nature of VAS, MSE and AAC as alertness measure, the
average scaled results show a remarkably similar alertness trend over the course
of the night hours. Average results for all 14 subjects are shown in Fig. 2. This
alertness trend is well-known from other studies and was thus expected [2]. The
high VAS-MSE correlation will serve further as benchmark to evaluate the other
alertness measures.

However, the good overall VAS-AAC and MSE-AAC correlation results hide the
large individual variability and thus can not accurately estimate or predict in-
dividual changes in alertness. Therefore, individualized correlation results are
shown in Fig. 3.

Considering the individual correlation results it appears that for subject ’5’ the
AAC fails to reflect the alertness course established by VAS and MSE. This could
because this individual did not produce alpha waves and/or by the restrictive
definition of the AAC. Nevertheless, it would be extremely beneficial to have an
objective, general valid test to measure the alertness for a broad population and
not only for alpha wave producing individuals.



Correlation Measures per Subject
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Fig. 3. Individualized correlation results between VAS, MSE and AAC.
Legend shows the overall correlations of averaged results for 14 subjects, xx = p < 0.01.

4 ”Alpha Attenuation Test” (AAT) - Revised

The AAT was developed based on two assumptions. First, the PSD of alpha
waves changes in correspondence to the alertness level of the individual and sec-
ond, the rate of change occurs in opposite direction for the AAT sections 'EC’
and 'EO’.

To test the fundamental assumptions behind the AAT, the following generalized
hypothesis should be investigated. Alertness would be high when the EEG-PSD
differs substantially between EC and EO episodes, resulting in good LV(Q dis-
crimination and a low LVQ test error. Alertness would be reduced when the
EEG-PSD during EC and EO are similar, resulting in low LVQ discrimination
and a high LVQ test error. Therefore, the test error of the LVQ network should
be directly correlated to the relative change in alertness. The EEG channel 'O1-
A2’ is used for the LVQ analysis allowing a direct comparison with the AAC. The
overall LVQ correlation results (Table 1) are very close to the correlation for the
AAC. Unfortunately, on the subject level there is disagreement. In addition to
subject ’5” now subject ’7’ shows no correlation any more to VAS and MSE (Fig.
4), if only the PSD of the alpha band is used (LVQ-A). The situation improves
slightly if the band concept is abandoned and the PSD of the integer frequen-
cies are used as features (LVQ). Still, there are troublesome indicators that the
selected method is not able to correctly capture the alertness changes during
the night. Adding additional EEG channels to the data set and using the FF
results in further deterioration of the correlation to the VAS and MSE measures.
For example, involving all EEG and EOG channels in the LVQ analysis reduces



the correlations for VAS-LVQ and for MSE-LVQ to 0.65 and 0.62, respectively.
This should not happen to a generalized method. We concluded that using the
differences and/or ratios of EEG-PSD between EO and EC episodes is not the
most efficient way for detecting alertness changes.

Table 1. Overall Correlations of Alertness Measures. *x = p < 0.01.

Correlations VAS MSE AAC LVQ (Alpha) LVQ
VAS 1 0.99%* -0.99=# 0.97== 0.96% =
MSE 0.99%* 1 -0.97== 0.95%=* 0.96**
AAC -0.99%= -0.97%= 1 -0.95%= 0.96%*

LVQ (Alpha) 0.97=* 0.95%* -0.95%= 1 --
LVQ 0.96=* 0.96=* -0.96%= -- 1

5 ”Alpha Attenuation Test” (AAT) - Modified

From the results showed in the previous section it became clear that any ratios
between EC and EO are not useful to extract information about alertness from
the EEG data. As a modified approach, we propose a further simplification of
the relative alertness estimation. We assume that EEG and EOG data during
the first AAT probably reflect the highest alertness. Thus, the EEG and EOG
of all other AAT sessions during the night will be compared by means of LVQ
networks to the first AAT-session which is used as reference.

If the EEG and EOG data sets during a given AAT session are extremely dif-
ferent from the EEG and EOG data sets during the first AAT, then the LVQ
network discriminates well, resulting in a low test error. A substantial change in
alertness between different AAT sessions has then occurred. On the other hand,
if the EEG and EOG data sets during a given AAT are similar to the EEG and
EOG data sets during the first AAT, then the LVQ network can not discriminate
well, resulting in a high test error. No significant change in alertness between
different AAT sessions has then occurred. With this simple pairwise comparison
of EEG and EOG for different AAT-times, we were able to obtain changes in
alertness over the night which is correlating to a high degree with VAS and MSE
(Fig. 5) on a subject by subject basis. The fact that a remarkable improvement
in the correlation results was achieved by fusing the data from all EEG and EOG
signals is encouraging as well.

Whereas the correlation results using only eye data (VAS-LVQ-EOGI1, MSE-



Correlation Measures per Subject (EEG: O1-A2)
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Fig. 4. Individualized correlation results between VAS, MSE and LVQ (EO v EC).
Legend shows the overall correlations of averaged results for 14 subjects, xx = p < 0.01.

LVQ-EOG1) for most subjects are good (except for subject ’9’, ’13’), a substan-
tial improvement can be achieved using all EEG and EOG data (VAS-LVQ-AIll,
MSE-LVQ-All). The new proposed alertness measure based on LVQ pairwise
discrimination AAT-session 1 (S1) versus AAT-session 2 (S2). to AAT-session 7
(S7), correlates well with VAS and MSE for all subjects.

Nevertheless, this method of tracking alertness changes based on data discrimina-
tion using LVQ, presented here for the first time, is not perfect. Our assumption
that the point of the highest alertness is at the beginning of the night may be not
valid for every subject. The potential of the approach would be further improved
if a second marker for the lowest alertness could be added.

6 Conclusions

The newly introduced methods of estimating alertness are utilizing the advan-
tages of Feature Fusion (FF) and the capabilities of LVQ neural networks to
classify data with low error rates and good discrimination sensitivity. High sen-
sitivity of LVQ network to small and unknown changes in the PSD of the EEG
and EOG data was applied to trace subtle alertness changes. These proposed
methods do not make any assumptions that certain EEG signals and predefined
frequency bands has to be used in order to get a reliable alertness measure.

Our first approach relies only on the general assumption that the characteristics
of the EEG-PSD between EO and EC episodes changes fundamentally when the
alertness of an individual is changing over the course of time. Unfortunately,
there are strong indications that the approach suffers from the same weaknesses
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Fig. 5. Individualized correlation results between VAS, MSE and LVQ (S1 v S2 ... S7).
Legend shows the overall correlations of averaged results for 14 subjects, * = p < 0.05.

than the AAT. The utilization of ratio between EO and EC episodes for EEG-
PSD bands diminishes the sensitivity to alertness related changes in the signals.
Our second approach relies on pairwise comparison of the PSD from well defined
EEG and EOG data at different moments in time. This approach shows great
potential and should be evaluated further using a second reference point of low
alertness.
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