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Abstract. The issue of Automatic Relevance Determination (ARD) has
attracted attention over the last decade for the sake of efficiency and ac-
curacy of classifiers, and also to extract knowledge from discriminant
functions adapted to a given data set. Based on Learning Vector Quanti-
zation (LVQ), we recently proposed an approach to ARD utilizing genetic
algorithms. Another approach is the Generalized Relevance LVQ which
has been shown to outperform other algorithms of the LVQ family. In the
following we present a unique description of a number of LVQ algorithms
and compare them concerning their classification accuracy and their ef-
ficacy. For this purpose a real world data set consisting of spontaneous
EEG and EOG during overnight-driving is employed to detect so-called
microsleep events. Results show that relevance learning can improve clas-
sification accuracies, but do not reach the performance of Support Vector
Machines. The computational costs for the best performing classifiers are
exceptionally high and exceed basic LVQ1 by a factor of 104.
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1 Introduction

In many data fusion applications it was shown that combining heterogeneous
sources is necessary in order to process much more information and to improve
classification accuracy. In case of detecting so-called microsleep events (MSE),
which are observed as attention lapses and prolonged eye lid closures during
overnight driving simulations, we reported that fusion on the feature level of
different sources contributes to improve the classification accuracy and the sta-
bility of the classifier [1]. Problems arise for large number of features, because all
non-parametric local classification methods have fundamental problems due to
the so-called ”curse of dimensionality”, i.e. the performance deteriorates when
going to higher dimensions in the input space [2]. In this respect, simple local
algorithms such as the nearest-neighbour classifier suffer more than non-local
learning algorithms such as support vector machines (SVM). Note that for a
given high-dimensional input vector the nearest neighbour is not much closer
than other input vectors, or in other words, the ratio of the distance between
the nearest and the farthest distance converges to one [2].



One way to overcome these difficulties is pruning of irrelevant features after rel-
evance’s have been gained with respect to the classification task. Models based
on Bayesian statistics were proposed by MacKay [3] and Neal [4] under the ter-
minology of Automatic Relevance Determination (ARD). ARD is also attractive
as it yields simpler and more interpretable models. It is a kind of knowledge
extraction in applications where the importance of features is unknown. This is
also the case of MSE detection where up to now no consistent expert knowledge
is available. Most known facts are related to fatigue and are not appropriate
for MSE detection. Based on Learning Vector Quantization (LVQ) [5], which
is a widely used and very intuitive approach to classification, three methods of
ARD has been introduced in the last decade, namely distinction sensitive LVQ
(DSLVQ) [6], relevance LVQ (RLVQ) [7] and generalized relevance LVQ (GR-
LVQ) [8]. All methods define a diagonal metric in input space which is adapted
during training according to plausible heuristics. Moreover, GRLVQ benefits of a
gradient dynamics on an appropriate error function. It generalizes RLVQ which
is based on simple Hebbian learning and which showed worse and instable results
on real world data [8].
The adaptation schemes which adjust weighting factors constitute a method for
determining the intrinsic dimensionality of the data. The weighting factors can
be regarded as relevance values. Dimensions with zero weight have no influence
on the distances and are not relevant. Hence, the dimensions which possess the
smallest relevance values are ranked as least important, i.e. they can be re-
moved. In general, an input space dimension as small as possible is desirable for
the above mentioned methods, for the sake of efficiency, accuracy, and simplicity
of neural network processing.
In the same line, we proposed an adaptive metric optimization approach (in

Fig. 1. Automatic Relevance Detection scheme using LVQ1 classifiers and a genetic
algorithm optimizing feature weight factors in order to minimize the mean training
errors [1].

the following labeled as ’GA-OLVQ1’) based on the fast converging and robust
OLVQ1 algorithm and a genetic algorithm (Fig. 1) [1]. Data of different sources,
in our case several channels of electroencephalogram (EEG) and two channels
of electrooculogram (EOG), are pre-processed and afterwards features are ex-
tracted using spectral power density estimation techniques. For each feature an
individual weight factor is assigned. In the subsequent step of classification the
weights are used in the distance calculation between input and prototype vectors



using weighted Euclidian metric. The classification accuracy, estimated by mul-
tiple hold-out validation of the trained networks, serves as fitness measure of a
genetic algorithm. Consequently, test set errors are not used, directly and indi-
rectly, for any step of optimization. The genetic algorithm generates populations
of LVQ networks with different sets of feature weighting factors. At the end of
this kind of optimization a population of well fitted LVQ networks remains. Over
the ten best fitting individuals, ranked by their training errors, the weight fac-
tors are averaged. These are the final relevance values.
The purpose of this paper is to present a unique description of several algorithms
of the LVQ family (section 2) and to compare their classification accuracy and
the efficacy of ARD algorithms to algorithms with non-adaptive metric on a
real world data set (section 4). The data set consists of spontaneous EEG and
EOG during driving and is introduced in section 3. The paper is closing by some
conclusions.

2 The Family of LVQ algorithms

Given a finite training set of feature vectors xi = (x1, . . . , xn)T assigned to class
labels yi : S = {(xi, yi) ⊂ <n × {1, . . . , C}|i = 1, . . . , m} where C is the number
of different classes. And given a set of randomly initialized prototype vectors
wi assigned to class labels ci : W = {(wi, ci) ⊂ <n × {1, . . . , C}|i = 1, . . . , p}.
The goal of all LVQ algorithms is to adapt the prototypes in order to yield good
generalization, i.e. to make the probability of misclassification of undrawn items
of a given population as small as possible.
Execute the following steps repetitively:

1. Select randomly (xi, yi) ∈ X and calculate the squared distances dA =
‖xi − wA‖2r0 and dB = ‖xi − wB‖2r0 of xi to the nearest and second nearest
prototype vector wA and wB , respectively, using a weighted Euclidian metric:

‖x− w‖ro =
√∑n

k=1 ro
k |xk − wk|2, where ro = (r1, . . . , rn)T is a normalized

weight vector containing the relevance values r1, . . . , rn.
With respect to the class labels cA, cB assigned to wA, wB resp., and the
label yi assigned to xi, four different cases are possible: (a) cA = yi∧ cB 6= yi,
(b) cA 6= yi ∧ cB = yi, (c) cA = yi ∧ cB = yi, (d) cA 6= yi ∧ cB 6= yi.
Depending on these cases, a pair of factors (νA, νB) is to be chosen from
table 1. They are needed in step (3) and modulate the step size and set the
sense of direction of each step. For GLVQ [9] and GRLVQ the factors νA

and νB are variable and are to be calculated in each iteration (Table 1).
2. Check if case (a) or case (b) is given and if xi is in a window around the

perpendicular bisector between wA and wB : min(dA/dB , dB/dA) > ( 1−s
1+s )2,

where s is the window size (s = 0.2, . . . , 0.3). If these conditions are fulfilled
go to step (3), otherwise do not execute update steps and go to step (1).

3. Update both prototype vectors: ∆wA = νA η(t)
(
xi − wA

)
and ∆wB =

νB η(t)
(
xi − wB

)
. The step size η(t) controls the rate of convergence of

the algorithm and depends on the iteration index t; η(t) is a monotonically
decreasing function.



Table 1. Iteration steps and factors (νA, νB) for different LVQ algorithms. For GLVQ

and GRLVQ κA = sgd ′
(

dA−dB
dA+dB

) [
dB

(dA+dB)2

]
, κB = sgd ′

(
dA−dB
dA+dB

) [
dA

(dA+dB)2

]
is to be

calculated where sgd ′ is the first derivative of the sigmoid function. For LVQ 3, OLVQ
3 and DSLVQ the parameter κ is fixed and should be in the range 0.1, . . . , 0.5.

4. Update the weight vector ro: ∀k = 1, . . . , n do the following three steps: (i)
update, (ii) threshold, (iii) normalization.
RLVQ: (i) rk = ro

k − νAηr

(
xi

k − wA
k

)2, (ii) rk = max (rk, 0), (iii) ro = 1
‖r‖2 r

GRLVQ: (ii) rk = max (rk, 0), (iii) ro = 1
‖r‖2 r

(i) rk = ro
k−ηrsgd ′

(
ζ dA−dB

dA+dB

) [
ζ

dB ·(xi
k−wA

k )2−dA·(xi
k−wB

k )2

(dA+dB)2

]
, ζ =





1,case(a)

−1,case(b)

0,otherwise

DSLVQ:(i) r = ro+ηr (ho − ro), hk = ζ
|xi

k−wB
k |−|xi

k−wA
k |

max(|xi
k
−wB

k |,|xi
k
−wA

k |) , ζ =





1,case(a)

−1,case(b)

0,otherwise

ho = 1
‖h‖1 h, (ii) rk =





1 , rk ≥ 1
10−4, rk ≤ 10−4

rk , otherwise
, (iii) ro = 1

‖r‖1 r

Note, DSLVQ executes step(3) but not step(4) in case(c) which leads to ζ=0
[6]. Rk, xi

k, wA
k , wB

k are the k-th components of r, xi, wA, wB , respectively.
5. Go to step (1) until an abortion criterion is fulfilled.

The final weight vector ro contains the relevances for each input space dimension.

3 Experimental data set

Experiments were conducted in our real car driving simulation lab. Seven EEG
channels from different scalp positions (C3, C4, Cz, O1, O2, A1, A2) and two
EOG-signals (vertical, horizontal) were recorded from 23 young adults during
driving sessions lasting 35 minutes. These sessions were repeated every hour
between 1 a.m. and 8 a.m. This way, the likelihood of the occurrence of MSE
was gradually increasing due to at least 16 hours without sleep prior to the
experiment.
MSE are typically characterized by driving errors, prolonged eye lid closures



or nodding-off. Towards automatic detection, two experts performed the initial
MSE scoring, whereby three video cameras were utilized to record i) drivers
head and upper part of the body, ii) right eye region and iii) driving scene.
For further processing, only clear-cut cases, where all the experts agreed on the
MSE, were taken into account. Despite providing enough test data to tune our
algorithms, the human experts could not detect some of the typical attention
lapses, such as the one with open eyes and stare gaze. The number of MSE
varied amongst subjects and was increasing with time of day for all subjects.
In all 3,573 MSE (per subject: mean number 162± 91, range 11-399) and 6,409
non-MSE (per subject: mean number 291 ± 89, range 45-442) were collected.
Non-MSE are periods between MSE where the subject is drowsy but shows no
clear or unclear MSE. This clearly highlights the need for an automated data
fusion based MSE detection system, which would not only detect the MSE also
recognized by human experts, but would also offer a possibility to detect the
critical MSE cases which are not recognizable by human experts.
Features were extracted of 8 sec long EEG and EOG segments during MSE
or non-MSE by power spectral density estimation and subsequent logarithmic
scaling and averaging in frequency bands in the range from 0.5 to 35.5 Hz and
a width of 1 Hz.

4 Results

In the following we want to compare between several algorithms within the
LVQ family and with other classification methods applied to our real world
two-class problem. The main question is addressed to classification accuracies
which we estimate by computing test errors in a cross validation scheme. There
is no indication that the chosen method of multiple hold-out has a remark-
able estimation bias compared to the leave one-out method which is an always
unbiased estimator of the true classification error [10]. In addition to the origi-
nal proposed LVQ variants (LVQ1, LVQ2.1, LVQ3, OLVQ1) [5] we examine four
further variants additionally executing relevance detection (DSLVQ, RLVQ, GR-
LVQ, GA-OLVQ1) as mentioned above. Furthermore, we compare them also to
the well-known nearest neighbour (1-NN and k-NN) algorithm, to the linear
discriminant analysis (LDA), the Error Backpropagation neural network (EBP)
and to the Support Vector Machine (SVM). SVM is applied using four differ-
ent kernel functions because it is not known a priori which matches best for
the given problem: 1) linear kernel k(xi, xj) = 〈xi, xj〉, 2) polynomial kernel:
k(xi, xj) = (〈xi, xj〉 + 1)d, 3) sigmoidal kernel: k(xi, xj) = tanh(α 〈xi, xj〉 + Θ)
and 4) RBF kernel: k(xi, xj) = exp(−γ ‖xi − xj‖2) for all xi, xj ∈ <n.
Mean training errors and mean test errors are reported in order to quantify

the ability to adapt to and to generalize the given problem (Table 1). Training
errors are differing largely. Some methods are able to adapt perfectly such as
1-NN, but are not protected against overfitting. 1-NN, a typical example of a
local classifier, as well as LDA, a simple global classifier, are exceeded by all LVQ
variants. No important differences in the classification accuracy occurred within



Table 2. Results of multiple hold-out cross validation: mean and standard deviation of
training and test errors. Different algorithms have been applied to spontaneous biosig-
nals of the two classes ”microsleep event” and ”non-microsleep event”. Parameters were
optimized empirically. C is the regularization parameter of SVM.

the LVQ family, despite the RLVQ which is by 4% inferior and GRLVQ which
is by 1% slightly superior. GRLVQ is outperformed by our proposed approach
(GA-OLVQ1). But SVM performs still better if a Gaussian kernel function has
been utilized and if the hyperparameter and the regularization parameter have
been optimized.
The parameters of all applied methods have been found empirically in order
to minimize test errors (Table 1). We report here only the most important pa-
rameters and their optimal values for this data set. This optimization has been
done on a single training / test partition and does not influence results of other
partitions. Therefore, a separate validation set is not necessary.
The computational load of the compared methods is differing largely. OLVQ1
and LVQ1 are unproblematic w.r.t. to the choice of their parameters and they
have lowest computational costs, which are in the region of 104 iterations. This
takes about 102 sec on a modern personal computer. This is the main reason
why we used OLVQ1 in our GA-OLVQ1 approach.
RLVQ exhibits large problems when parameters are not optimal. It is very sensi-
tive to the step size ηr(t) (should be about 10−3), otherwise RLVQ converges as
fast as LVQ1. The window parameter is crucial when LVQ2, LVQ2.1, or LVQ3
is used (we have found out s = 0.1 to be good). They need 10 times more itera-
tions as LVQ1 and advantageously, they perform with a lower optimal number of
prototypes. DSLVQ showed the same problems and the same need of iterations
as LVQ2. It is not sensitive as much as RLVQ to the choice of the step size ηr(t).
Except for the computational load, GLVQ seem to have the same properties as
DSLVQ, though no metric adaptation is learned. GLVQ needs 106 iterations in



the average and therefore, it causes 100 times more computational costs than
LVQ1. GRLVQ is in the same shape as GLVQ. The same problems as with LVQ2
are occurring and it needs about 100 times longer than LVQ1.
Our GA-OLVQ1 approach surpasses the computational costs of all other meth-
ods. It takes about 104 times longer than LVQ1. Therefore, we distribute the
population of LVQ1 networks in a pool of 32 top modern computers and achieve
a temporal consumption of about one day. The same amount of computational
cost is reached by SVM because scanning for optimal values of the hyperpa-
rameter and of the regularization parameter is necessary. A single run of SVM
adaptation needs about 10 times longer as for LVQ1, except when the hyperpa-
rameter value is far from the optimum. In these cases a single run of SVM can
take more than 104 times longer as for LVQ1.
Lastly, we want to present the acquired relevance values (Fig. 2). To some ex-

Fig. 2. Relevance values of GA-OLVQ1 and of GRLVQ for each frequency band
(range: 0.5, . . . , 35.5Hz, 1Hz width).

tend, they are differing between both ARD methods. The relevance values of
GA-OLVQ1 show higher dynamic and mostly lower standard deviations. EEG
frequencies in the region between the delta and theta band and in the alpha
band, but not in the beta band are important for MSE detection. (The just now
mentioned bands are common in the EEG community.) These results are in line
with them in fatigue research, but the often observed downshift from alpha to
high theta is in contrast to our results. In this region low relevance values were
found.

5 Conclusions

We have presented an overview of some methods of the LVQ family including
four approaches to automatic relevance determination. Their classification accu-
racy has been compared on a biomedical data set consisting of about 104 items.



It turned out that two of the four ARD approaches performed better than the
rest of the LVQ family. Therefore, the usefulness of the underlying global metric
adaptation is corroborated.
Our approach which combines all features of all the recorded EEG and EOG
channels and which adapts relevance values using genetic algorithms outper-
formed all other LVQ methods. But best results, with test errors down to 10%,
were obtained by Support Vector Machines utilizing a Gaussian kernel function
and neglecting the need of metric adaptation.
Unfortunately, the computational costs of both best performing methods are
exceptionally high. These costs exceed LVQ1 by a factor of 104.
The relevance values of the PSD features of the EEG were similar to findings
of other authors in the adjacent field of fatigue research, but for a deeper un-
derstanding much more research is needed. Furthermore, there are large inter-
individual differences of the EEG and EOG characteristic [1]. It would be in-
teresting to investigate whether methods of local metric adaptation can handle
this problem and therefore gaining better and more stable results than global
adaptation schemes. Another future issue should be the extension to a greater
variety of feature extraction methods which is also likely to improve and stabilize
the MSE detection. These issues will be further steps on the long way to estab-
lish a reference measure needed for the development of video-based drowsiness
warning systems.
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