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Abstract. We compare two comprehensive classification algorithms, support vec-
tor machines (SVM) and several variants of learning vector quantization (LVQ),
with respect to different validation methods. The generalization ability is esti-
mated by ”multiple-hold-out” (MHO) and by ”leave-one-out” (LOO) cross valida-
tion method. The £a-method, a further estimation method, which is only applicable
for SVM and is computationally more efficient, is also used.

Calculations on two different biomedical data sets generated of experimental data
measured in our own laboratory are presented. The first data set contains 748
feature vectors extracted of posturographic signals which were obtained in inves-
tigations of balance control in upright standing of 48 young adults. Two different
classes are labelled as ”without alcoholic impairment” and ”with alcoholic impair-
ment”. This classification task aims the detection of small unknown changes in a
relative complex signal with high inter-individual variability.

The second data set contains 6432 feature vectors extracted of electroencephalo-
graphic and electroocculographic signals recorded during overnight driving simu-
lations of 22 young adults. Short intrusions of sleep during driving, so-called mi-
crosleep events, were observed. They form examples of the first class. The second
class contains examples of fatigue states, whereas driving is still possible. If mi-
crosleep events happen in typical states of brain activity, the recorded signals should
contain typical alterations, and therefore discrimination from signals of the second
class, which do not refer to such states, should be possible.

Optimal kernel parameters of SVM are found by searching minimal test errors with
all three validation methods. Results obtained on both different biomedical data
sets show different optimal kernel parameters depending on the validation method.
It is shown, that the £a-method seems to be biased and therefore LOO or MHO
method should be preferred.

A comparison of eight different variants of LVQ and six other classification methods
using MHO validation yields that SVM performs best for the second and more com-
plex data set and SVM, GRLVQ and OLVQ1 show nearly the same performance
for the first data set.

1 Introduction
Support Vector Machines and Learning Vector Quantization are two efficient
methods of machine learning which are approved e.g. in handwritten word
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recognition, robotic navigation, textual categorization, face recognition and
time series prediction [Miiller et al. (2001), Osuna et al. (1997), Cao and
Tay (2003)]. The aim of this paper is to compare both methods on two real
world biomedical data sets using several variants of LVQ and of SVM and of
some other classification algorithms. Among them are several methods of au-
tomatic relevance detection, e.g. recently introduced GRLVQ [Hammer and
Villmann (2002)].

Calculations were done on two fully different biomedical data sets coming
from two different disciplines: biomechanics and electrophysiology applied to
psychophysiology. The first data set comes out of an investigation of balance
control in upright standing of 48 young volunteers. They were investigated
without impairment and 40 minutes after consumption of 32 grams of alcohol.
Therefore we have two different classes which are labelled as ”without alco-
holic impairment” and ”with alcoholic impairment”. Subjects had to stand
on a solid plate with elevated arms and turned hands, the so-called supina-
tion position [Golz et al. (2004)]. Signals of four force sensors located between
plate and ground are combined to calculate the two-dimensional signal of the
centre-of-foot-pressure, which is a sensitive measure of postural sway. From
both signals the power spectral densities were estimated by Burg’s autore-
gressive modelling method. This two-class problem is nearly weight out and
consists of 376 feature vectors of 40 components. This classification task aims
the detection of small unknown changes in a relative complex signal with high
inter-individual variability.

The second and clearly more extensive and higher-dimensional data set con-
tains power spectral densities of electroencephalograms (EEG) and elec-
trooculograms (EOG) recorded during strong fatigue states and during mi-
crosleep events of 16 young car drivers [Sommer and Golz (2003)]. Microsleep
events are defined as short intrusions of sleep into ongoing wakefulness during
attentional tasks and are coupled to dangerous attention losses. The decision
which behavioural event belongs to "microsleep events” and which to ”strong
fatigue” was made by two independent experts. This was mainly done by vi-
sual scoring of video recordings. Subjects had to drive overnight starting at
1:00 a.m. (7 x 40 min) in our driving simulation lab under monotonic condi-
tions. Small segments (duration 6 sec) of EEG and EOG were taken during
both events. A comparison of several spectral estimation methods yields that
Burg’s autoregressive method is outperformed by the simple periodogram
method [Sommer and Golz (2003)]. In this paper we therefore report only
on results for the second data set using the latter method. The extracted
data set contains 5728 feature vectors of 207 components. This classification
task also aims the detection of small unknown changes in a relative complex
signal with high inter-individual variability. If microsleep events happen in
typical states of brain activity, the recorded signals should contain typical al-
terations, and therefore discrimination from signals of the second class, which
do not refer to such states, should be possible.
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There exists no expert knowledge to solve both classification tasks. Knowl-
edge extraction in both fields is strongly impaired due to high inter-individual
differences in the observed biosignals and due to high noise. Therefore, adap-
tive and robust methods of machine learning are essential.

Learning Vector Quantization (LVQ) [Kohonen (2001)] is a supervised learn-
ing and prototype-vector based classification method which adapts a piecewice
linear discriminant function using a relative simple learning rule due to the
principle of competitive learning. Activation of neurons is based on distance
measures and therefore depends on metrics used. A known disadvantage of
LVQ is its high dependence on initialization of the weight matrix [Song and
Lee (1996)] which can be decreased by an initial unsupervised phase of train-
ing [Golz et al. (1998)]. [Sato (1999)] developed a modification, the so-called
Generalized LVQ to decrease variance due to initializations. Other develop-
ments are LVQ methods which iteratively adapt a feature weighting during
training to improve results and to give back a feature relevance measure. Here
we used three representatives, the Distinctive Selection LVQ (DSLVQ), the
Relevance LVQ (RLVQ) and the Generalized Relevance LVQ (GRLVQ) (for
references we refer to [Hammer and Villmann (2002)].

The Support Vector Machine (SVM) [Vapnik (1995)] is also a supervised
learning method and is more computationally expensive than LVQ. In its
basic version, SVM can only adapt to linearly separable two-class problems.
Advantageously, training is restricted to search for only those input vectors
which are crucial for classification. They are called support vectors and are
found by solving a quadratic optimization problem. For real world applica-
tions the soft-margin SVM [Cortes and Vapnik (1995)] is commonly used
which allows a restricted number of training set errors. Another advantage of
SVM in comparison to many other classification methods is the uniqueness
of the solution found and the resulting independence on initialization and
on training sequencing. Important parameters are the slack variable and the
type and parameters of the kernel function. Disadvantages of SVM like the
relative large memory allocation during training and the relative slow con-
vergence can be removed by optimization of the training algorithm [Joachims
(2002)]. This is essential to apply SVM to larger sized problems.

2 Performance Measurement

The performance of a classification algorithm is generally problem dependent.
The ability of generalization is a measure of expected correct classifications
of unknown patterns of the same underlying distribution function as of the
training set. It can be estimated empirically by calculation of test set error
rate. Here, we utilize two cross validation method, the "multiple hold-out”
(MHO) and the ”leave-one-out” (LOO) method [Devroye et al. (1996)]. Both
methods require a learning set (training + test set) of statistically indepen-
dent feature vectors. This is e.g. violated in time series processing when using
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Fig. 1. Semilogarithmic plot of mean training (left) and mean test (right) errors
of SVM vs. parameter gamma of Gaussian kernel function applied to posturogra-
phy data. Estimates of LOO method are shown by left upper graph and by right
lower graph, estimates of MHO method are shown by graph with errorbars, and
fa-estimate by right, upper graph. The regularization parameter of C = 10 was
separately found to be sufficient.

overlapping segmentation; otherwise too optimistic estimates are resulting.
The acquisition of statistically independent patterns is expensive. In bio-
medical problems this process often requires an independent scoring process
mostly done by experts and requires experimental and organisational effort.
As a consequence, relative small data sets on small groups of test subjects
are mostly available. Processing of those data sets should be as efficient as
possible under the restriction of computational resources [Joachims (2002)].
The MHO validation consumes less computational time than the LOO method.
The first method has the ratio of sizes of test and training set as a free se-
lectable parameter for which upper and lower bounds are estimable [Kearns
(1996)]. After repeating N times the random partition in test and training
set following up by single hold-out estimation one can conclude estimates of
adaptivity and ability of generalization by descriptive statistics. We calculate
mean and standard deviations of training and test errors. Disadvantageously
MHO is biased, because of the limited hypothesis space [Joachims (2002)].
This limitation is minimal in case of LOO because the size of the training
set is reduced by only one feature vector. Therefore, this method supplies an
almost unbiased estimate of the true classification error. In the special case of
the SVM classificator the {a-estimate was proposed [Joachims (2002)]. This
estimator avoids high computational effort.

There is no common criterium for the choice of kernel function [Miiller et
al. (2001)]. Each function type has few parameters which can be defined em-
pirically. Mostly this is done by variation of parameters and calculation of
classification errors or the VC-dimension [Van Gestel et al. (2002), Joachims
(2002)]. The slack variable is determined in the same manner. For our data
sets we have tested the linear, the polynomial and the Gaussian kernel func-
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Fig. 2. Semilogarithmic plot of mean training (left) and mean test (right) errors of
SVM vs. parameter gamma of Gaussian kernel function applied to microsleep data.
Estimates of LOO method are shown by left upper graph and by right lower graph,
estimates of MHO method are shown by graph with errorbars, and a-estimate by
right, upper graph. The regularization parameter of C = 1.5 was separately found
to be sufficient.

tion. In the following we refer only to results of Gaussian kernel SVM because
they performed best in all cases.

Variation of the parameter gamma, which predefines the influence region of
single support vectors, shows even in a semilogarithmic plot a gradually de-
creasing test error which is abruptly increasing after the optimum (Fig. 1
right). Test errors are in case of SVM efficiently computable by LOO method
and are mostly slightly lower than mean errors of MHO method. The same
plot, but calculated for training errors (Fig. 1 left), shows an inverse result.
Training errors of LOO method are mostly slightly higher than MHO results.
The £a-estimate shows a different dependence on gamma and is in the vicin-
ity of both other estimate only in a small range of gamma. Therefore, the
£a-estimate should not be suitable for selection of parameters.

Results of the second data set (Fig. 2) are similar to the first, though the
processes of data generation are fundamentally distinct. A difference is seen
in optimal value of gamma and another in optimal value of mean test er-
rors (Fig. 2 right). The optimal mean test error of the microsleep data set
is about 9.8% and the standard deviation is clearly lower, which is argued
by the clearly higher size of the data set. On this data set the £a-method is
resulting in the same optimal parameter gamma than both other estimations,
but is estimating clearly higher errors.

3 Comparison of different classification methods

In the following we want to compare several variants of LVQ, SVM and other
classification methods applied to both data sets. In addition to the originally
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proposed variants, LVQ1, LVQ2.1, LVQ3, OLVQ1 [Kohonen (2001)], we used
four further variants for relevance detection and feature weighting as men-
tioned above. Furthermore, some unsupervised learning methods which are
calibrated by class labels after training. We compare well-known k-Means
and Self-Organizing Map to a representative of incremental neural networks,
the Growing Cell Structures [Fritzke (1994)]. All three methods find out a
trade-off between a quantized adaptation of the probability density function
and a minimization of the mean squared error of vector quantization. In
all three unsupervised methods we tested also the modification ”supervised”
(sv) which is using the class label as a further component in input vectors of
the training set [Kohonen (2001)]. The term is somewhat misleading because
training remains unsupervised. Though this modification has only a small ef-
fect on distance calculations during training, the algorithm should be able to
adapt better. Therefore, training errors are always lower than without mod-
ification ”sv”. The posturography data set (Tab. 1A) is very well adaptable
reflecting in very low training errors, especially for supervised learning meth-
ods which perform nearly equally by mean errors of about 1% and lower. The
ability of generalization is also nearly equal suggesting by mean test errors
of about 4% which is unusually low for real world biosignals. The quickly
converging method OLVQ1 arrives at same level than modern methods GR-
LVQ and SVM. As expected, in (Tab. 1A) a large difference in test errors to
unsupervised learning methods is evident. The modification ”sv” allows the
algorithm to find a more generalizable discriminant function.

The second and more complex data set (microsleep data) supplies different
results (Tab. 1B). Training errors are much higher despite the exception of
no errors of SVM. Unsupervised learning methods with modification ”sv”
perform better than all LVQ variants with respect to training errors. Among
all LVQ variants OLVQ1 performs best. Two modified LVQ algorithms for
relevance detection perform slightly worse, but better than standard LVQ.
The higher complexity is also reflected in test errors. They are between 14%
and 16% for all LVQ variants and are best for OLVQ1. Here, SVM shows
lowest errors and the best ability to handle higher complexity. The relative
improvement (AE / E) compared to LVQ variants is about 30%. As expected,
unsupervised methods are not able to perform comparably. Interestingly, in
case of microsleep data there is no difference in test errors between unsuper-
vised methods with and without modification ”sv”. This modification shows
better adaptivity in all cases shown by lower training errors (Tab. 1), but
doesn’t improve test errors in more complex data.

4 Conclusions

Both real world two-class problems have been solved with low error rates us-
ing prototype-vector based classification methods. The posturography data
set has shown very good discriminability indicating high sensitivity of this
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classification (A) posturography (B) microsleep

method Ergam [%0] Eqgsy [%] Ergam [%0] Ergsr [%]
LvVQ1 08+07 48 +27 11.9+06 159+1.2
LVQ2.1 08 +07 49 £ 26 11,8+ 0,6 158=1.3
LVQ3 08 £0,7 48 £ 2,6 11,9+ 0,6 15912
OLVQ1 02+073 42 +22 92+04 139 +09
OLVQlioo 03+02 39+1.7 95+03 13505
RLVQ 1,2+09 65+238 125+1,2 15518
DSLVQ 03+03 47 £22 98 £0.,5 15112
GLVQ 05+02 59+24 11.5+0,5 159+09
GRLVQ 03+03 44+273 96+04 142 +05
SVM 00+£00 43 +£24 0,0+ 0,0 10,6 £ 0,4
SVM; o0 0.0+00 40+0,0 0.0+0,0 9.8 +00
5% 69+1,7 16,8 £ 4,4 16,3 £1,2 16,8 £1,5
kM sv 03+09 89+373 63+0,7 162 +1.4
SOM 89+006 133 +1.7 132 +08 17.7+1,6
SOM sv 1.4+06 91 +34 86+07 16,7+1.3
GCS 29+1.2 11,2 £ 5,0 129+1,5 17221
GCS sv 03+04 88 +44 55+1.0 169+1.9

Table 1. mean and standard deviations of test and training errors of different
classification methods applied to posturography (A) and to microsleep data (B)

measurement technique to small and unknown changes. This result is achiev-
able only by processing spectral domain features. As not reported here, we
failed in achieving similar results using alternatively 23 time domain features
which were reported of several authors in the posturography literature of the
last two decades. As well as processing of all 23 features and as also processing
some combinations of them did not lead to similar results as by spectral do-
main features. This indicates that no simple effects, like changes in amplitude
histogram, but dynamical aspects of postural time series are influenced the
effect of alcohol intake on posture. OLVQ1, SVM and the recently introduced
GRLVQ perform best. The first method is the most simplest and fastest in
convergence. Their iterative adaptation rule of step size during training seems
to be the key point to outperform other adjacently associated methods, like
LVQ1.

In a more complex data set (microsleep) which has much more feature vectors
and higher dimensionality than the posturography data set SVM outperforms
all other methods. In contrast to all other methods SVM is not dependent
on initializations and always finds out the global minimum of the error func-
tion [Miiller et al. (2001)]. Utilizing LOO method to estimate the ability of
generalization is computationally expensive but in case of SVM an efficient
calculation using support vectors only can be used. The £a-estimator is also
an efficient method, but as our empirical results on both biomedical data sets
indicate, this estimator seems to be biased. Therefore, SVM combined with
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LOO validation exposes to be the most recommendable combination.
Nevertheless, in some parameter settings the SVM combined with all three
mentioned validation methods needs up to 100 times more computational
effort than OLVQ1 combined with MHO validation. For extensive scanning
of parameters in the whole processing cue, we therefore recommend to apply
OLVQ1 / MHO and for subsequent fine tuning we recommend to apply SVM
/ LOO.
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